
SUnet Reference Manual
For SUnet release 2.1

October 2004

Dr. S2, Martin Gasbichler, Eric Marsden, Andreas Bernauer

Contents

Contents 2

1 Overview 6

1.1 Obtaining the system . 7

1.2 How to install SUnet . 7

1.3 How to use the packages . 7

2 HTTP server 9

2.1 Starting and configuring the server 9

2.2 Requests . 11

2.3 Responses . 12

2.4 Response Bodies . 14

2.5 Request Handlers . 14

2.5.1 Basic Request Handlers 15

2.5.2 Static Content Request Handlers 16

2.6 CGI Server . 19

2.7 Scheme-Evaluating Request Handlers 19

2.7.1 The loser structure . 20

2.7.2 The toothless structure 20

2.7.3 The toothless-eval structure 20

2.8 Writing Request Handlers . 21

2.8.1 Parsing HTML Forms . 21

2.9 SSL encryption with Apache . 21

2

3 Parsing and Processing URIs 23
3.1 Notes on URI Syntax . 23

3.2 Procedures . 23

4 Parsing and Processing URLs 27
4.1 Server Records . 27

4.2 HTTP URLs . 28

5 Writing CGI Scripts in Scheme 30

6 SUrflet server 31
6.1 Howto . 31

6.1.1 Introduction . 31

6.1.2 How to run the SUnet webserver that handles SUrflets . 32

6.1.3 How to send web pages 34

6.1.4 How to write web forms 39

6.1.5 Program flow control . 48

6.1.6 Data management . 53

6.1.7 My own SXML . 55

6.2 API description . 57

6.2.1 The SUrflet server . 57

6.2.2 SUrflets . 59

6.2.3 SUrflet management . 60

6.2.4 Surflet Request . 61

6.2.5 Surflet Response . 61

6.2.6 Sessions . 62

6.2.7 Basic I/O . 66

6.2.8 Web I/O . 67

6.2.9 Continuation-URL . 71

6.2.10 Input fields . 72

6.2.11 Web addresses . 80

6.2.12 Callbacks . 81

6.2.13 Outdater . 83

6.2.14 Simple SUrflets . 84

7 FTP Server 87

3

8 FTP Client 90

9 Parsing Netrc Files 93

10 RFC 822 Library 95

11 Time and Daytime 97
11.1 Daytime . 97
11.2 Time . 97

12 SMTP Client 99

13 POP3 Client 102

14 DNS Client Library 104
14.1 Overview . 104
14.2 Conditions . 104
14.3 High-level Interface . 106
14.4 Low-level Interface . 107
14.5 Parsing /etc/resolv.conf . 112
14.6 IP Addresses as Dotted Strings 112

Index 114

4

Of course, there is no Underground—or Untergrund, as those German new-
age kids like to call the movement whose orders they have sworn to follow.
The age we all remember—the cliff-green turbocharged convertibles, cigarettes
hanging loose in the corners of our mouths, and those trigger-happy fingers
always ready for the quick hack—is long gone.

In retrospect, it all seems like a candy-colored dream, and it may very well
be—after all, there was never any proof that the Untergrund ever existed, and
even if it did, we can be sure the obedient followers of the shadowy movement
leaders have long burned the papers, subjected the hard drives and diskettes
to interminable sessions of the junkyard magnet, and eradicated all shreds of
memory from the brains of those who might have talked through long sessions
of Tcl hacking to the sounds of Celine Dion records.

Yet there are those who still covet membership in that secret cult—to gain
access to its powerful lore, to usurp invidious and powerful superiors, or sim-
ply to impress their girlfriends. For those lost souls of the modern age, I have
a few words of advice:

It’s not a question of “membership”—silly merchandise and ridiculous cer-
tificates. If you are truly meant to be part of the Untergrund, you will know.
The Untergrund will find you.

Alas, probably not.

April, 2003

Chapter 1

Overview

The Scheme Untergrund Networking Package (SUnet, for short) is a collection
of applications and libraries for Internet hacking in Scheme. It runs under Scsh,
the Scheme shell. SUnet includes the following components:

The SUnet Web server This is a highly configurable HTTP 1.0 server in
Scheme. The server is accompanied by some libraries which may also
be used separately:

• URI and URL parsers and unparsers

• a library for writing CGI scripts in Scheme

• server extensions for interfacing to CGI scripts

• server extensions for uploading Scheme code

• simple structured HTML output library

The server also ships with a sophisticated interface for writing server-
side Web applications called SUrflets.

The SUnet ftp server This is a complete anonymous ftp server in Scheme.

ftp client library This library allows you to access ftp servers programmati-
cally.

netrc library This library parses authentication information contained in
~/.netrc.

SMTP client library This library allows you to forge mail from the comfort of
your own Scheme process.

POP3 client library This library allows you to access your POP3 mailbox from
inside scsh.

6

RFC822 header library This library parses email-style headers.

Daytime and Time protocol client libraries These libraries lets you find out
what time it is without paying for a Rolex.

DNS client library This is a complete, multithreaded DNS library.

An ls clone This library displays Unix-style directory listings without run-
ning ls.

1.1 Obtaining the system

The SUnet code is available from http://www.scsh.net/resources/sunet.
html. To run the code, you need version 0.6.6 or later of scsh from http://
www.scsh.net/.

1.2 How to install SUnet

Starting with version 2.1 SUnet conforms to the packaging proposal for scsh
by Michel Schinz and needs Michel’s installation library to install prop-
erly. For more information, please see http://lamp.epfl.ch/~schinz/scsh_
packages/.

In short, this means that you can install SUnet by unpacking the SUnet
tarball and issuing the following command in the created directory:

scsh-install-pkg --prefix /path/to/your/package/root

See the file INSTALL for the generic installation instructions for scsh pack-
ages.

You need to install version 4.9 of the SSAX package to use SUnet. SSAX is
available from http://lamp.epfl.ch/~schinz/scsh_packages/.

1.3 How to use the packages

After installation, you can use the -lel command-line option to load the pack-
age definitions. If you installed SUnet including SUrflets (the default), you
need to load SSAX as well:

atari-2600[72] scsh -lel SSAX-4.9/load.scm -lel sunet-2.1/load.scm
Welcome to scsh 0.6.6 (King Conan)
Type ,? for help.

7

http://www.scsh.net/resources/sunet.html
http://www.scsh.net/resources/sunet.html
http://www.scsh.net/
http://www.scsh.net/
http://lamp.epfl.ch/~schinz/scsh_packages/
http://lamp.epfl.ch/~schinz/scsh_packages/
http://lamp.epfl.ch/~schinz/scsh_packages/

Now, all structures defined by SUnet and SSAX are available:

> ,open ftp
Load structure ftp (y/n)? y
[netrc netrc.scm]
[ftp ftp.scm]
> call library code

> ,exit
atari-2600[73]

8

Chapter 2

HTTP server

The SUnet HTTP Server is a complete industrial-strength implementation of
the HTTP 1.0 protocol. It is highly configurable and allows the writing of dy-
namic web pages that run inside the server without going through complicated
and slow protocols like CGI or Fast/CGI.

2.1 Starting and configuring the server

All procedures described in this section are exported by the httpd structure.
The Web server is started by calling the httpd procedure, which takes one

argument, an options value:

(httpd options) −→ no return value procedure

This procedure starts the server. The options argument specifies various
configuration parameters, explained below.

The server’s basic loop is to wait on the port for a connection from an
HTTP client. When it receives a connection, it reads in and parses the re-
quest into a special request data structure. Then the server forks a thread
which binds the current I/O ports to the connection socket, and then
hands off to the top-level request handler (which must be specified in
the options). The request handler is responsible for actually serving the
request—it can be any arbitrary computation. Its output goes directly
back to the HTTP client that sent the request.

Before calling the request handler to service the request, the HTTP server
installs an error handler that fields any uncaught error, sends an error
reply to the client, and aborts the request transaction. Hence any error
caused by a request handler will be handled in a reasonable and robust
fashion.

9

The options argument can be constructed through a number of procedures with
names of the form with-.... Each of these procedures either creates a fresh op-
tions value or adds a configuration parameter to an old options argument. The
configuration parameter value is always the first argument, the (old) options
value the optional second one. Here they are:

(with-port port [options]) −→ options procedure

This specifies the port on which the server listens. Defaults to 80.

(with-root-directory root-directory [options]) −→ options procedure

This specifies the current directory of the server. Note that this is not the
document root directory. Defaults to /.

(with-fqdn fqdn [options]) −→ options procedure

This specifies the fully-qualified domain name the server uses in auto-
matically generated replies, or #f if the server should query DNS for the
fully-qualified domain name.. Defaults to #f.

(with-reported-port reported-port [options]) −→ options procedure

This specifies the port number the server uses in automatically gener-
ated replies or #f if the reported port is the same as the port the server
is listening on. (This is useful if you’re running the server through an
accelerating proxy.) Defaults to #f.

(with-server-admin mail-address [options]) −→ options procedure

This specifies the email address of the server administrator the server
uses in automatically generated replies. Defaults to #f.

(with-request-handler request-handler [options]) −→ options procedure

This specifies the request handler of the server to which the server del-
egates the actual work. More on that subject below in Section 2.5. This
parameter must be specified.

(with-simultaneous-requests requests [options]) −→ options procedure

This specifies a limit on the number of simultaneous requests the server
servers. If that limit is exceeded during operation, the server will hold off
on new requests until the number of simultaneous requests has sunk be-
low the limit again. If this parameter is #f, no limit is imposed. Defaults
to #f.

(with-log-file log-file [options]) −→ options procedure

10

This specifies the name of a log file for the server where it writes Common
Log Format logging information. It can also be a port in which case the
information is logged to that port, or #f for no logging. Defaults to #f.

To allow rotation of log files, the server re-opens the log file whenever it
receives a USR1 signal.

(with-syslog? syslog? [options]) −→ options procedure

This specifies whether the server will log information about incoming to
the Unix syslog facility. Defaults to #t.

(with-resolve-ip? resolve-ip? [options]) −→ options procedure

This specifies whether the server writes the domain names rather than
numerical IPs to the output log it produces. Defaults to #t.

To avoid paranthitis, the make-httpd-options procedure eases the con-
struction of the options argument:

(make-httpd-options transformer value . . .) −→ options procedure

This constructs an options value from an argument list of parameter
transformers and parameter values. The arguments come in pairs, each
an option transformer from the list above, and a value for that parameter.
Make-httpd-options returns the resulting options value.

For example,

(httpd (make-httpd-options
with-request-handler (rooted-file-handler "/usr/local/etc/httpd")
with-root-directory "/usr/local/etc/httpd"))

starts the server on port 80 with /usr/local/etc/httpd as its root directory
and lets it serve any file out from this directory.

2.2 Requests

Request handlers operate on requests which contain the information needed to
generate a page. The relevant procedures to dissect requests are defined in the
httpd-requests structure:

(request? value) −→ boolean procedure
(request-method request) −→ string procedure
(request-uri request) −→ string procedure
(request-url request) −→ url procedure
(request-version request) −→ pair procedure

11

(request-headers request) −→ list procedure
(request-socket request) −→ socket procedure

The procedure inspect request values. Request? is a predicate for re-
quests. Request-method extracts the method of the HTTP request; it’s a
string such as "GET", "PUT". Request-uri returns the escaped URI string
as read from request line. Request-url returns an HTTP URL value
(see the description of the url structure in 4). Request-version returns
(major . minor) integer pair representing the version specified in the
HTTP request. Request-headers returns an association lists of header
field names and their values, each represented by a list of strings, one for
each line. Request-socket returns the socket connected to the client.1

2.3 Responses

A path handler must return a response value representing the content to be sent
to the client. The machinery presented here for constructing responses lives in
the httpd-responses structure.

(make-response status-code maybe-message seconds mime extras body) −→ response procedure

This procedure constructs a response value. Status-code is an HTTP sta-
tus code (more on that below). Maybe-message is a a message elaborating
on the circumstances of the status code; it can also be #f meaning that
the server should send a default message associated with the status code.
Seconds natural number indicating the time the content was created, typ-
ically the value of (time). Mime is a string indicating the MIME type
of the response (such as "text/html" or "application/octet-stream").
Extras is an association list with extra headers to be added to the response;
its elements are pairs, each of which consists of a symbol representing the
field name and a string representing the field value. Body represents the
body of the response; more on that below.

(make-redirect-response location) −→ response procedure

This is a helper procedure for constructing HTTP redirections. The server
will serve the new file indicated by location. Location must be URI-
encoded and begin with a slash.

(make-error-response status-code request [message] extras . . .) −→ response procedure

1Request handlers should not perform I/O on the request record’s socket. Request handlers are
frequently called recursively, and doing I/O directly to the socket might bypass a filtering or other
processing step interposed on the current I/O ports by some superior request handler.

12

This is a helper procedure for constructing error responses. code is status
code of the response (see below). Request is the request that led to the
error. Message is an optional string containing an error message written
in HTML, and extras are further optional arguments containing further
message lines to be added to the web page that’s generated.

Make-error-response constructs a response value which generates a
web page containg a short explanatory message for the error at hand.

ok 200 OK
created 201 Created
accepted 202 Accepted
prov-info 203 Provisional Information
no-content 204 No Content
mult-choice 300 Multiple Choices
moved-perm 301 Moved Permanently
moved-temp 302 Moved Temporarily
method 303 Method (obsolete)
not-mod 304 Not Modified
bad-request 400 Bad Request
unauthorized 401 Unauthorized
payment-req 402 Payment Required
forbidden 403 Forbidden
not-found 404 Not Found
method-not-allowed 405 Method Not Allowed
none-acceptable 406 None Acceptable
proxy-auth-required 407 Proxy Authentication Required
timeout 408 Request Timeout
conflict 409 Conflict
gone 410 Gone
internal-error 500 Internal Server Error
not-implemented 501 Not Implemented
bad-gateway 502 Bad Gateway
service-unavailable 503 Service Unavailable
gateway-timeout 504 Gateway Timeout

Table 2.1: HTTP status codes

(status-code 〈name 〉) −→ status-code syntax
(name->status-code symbol) −→ status-code procedure
(status-code-number status-code) −→ integer procedure
(status-code-message status-code) −→ string procedure

The status-code syntax returns a status code where 〈name 〉 is the name

13

from Table 2.1. Name->status-code also returns a status code for a name
represented as a symbol. For a given status code, status-code-number
extracts its number, and status-code-message extracts its associated de-
fault message.

2.4 Response Bodies

A response body represents the body of an HTTP response. There are several
types of response bodies, depending on the requirements on content genera-
tion.

(make-writer-body proc) −→ body procedure
This constructs a response body from a writer—a procedure that prints
the page contents to a port. The proc argument must be a procedure ac-
cepting an output port (to which proc prints the body) and the options
value passed to the httpd invocation.

(make-reader-writer-body proc) −→ body procedure
This constructs a response body from a reader/writer—a procedure that
prints the page contents to a port, possibly after reading input from the
socket of the HTTP connection. The proc argument must be a procedure
accepting three arguments: an input port (associated with the HTTP con-
nection socket), an output port (to which proc prints the body), and the
options value passed to the httpd invocation.

2.5 Request Handlers

A request handler generates the actual content for a request; request handlers
form a simple algebra and may be combined and composed in various ways.

A request handler is a procedure of two arguments like this:

(request-handler path req) −→ response procedure
Req is a request. The path argument is the URL’s path, parsed and split at
slashes into a string list. For example, if the Web client dereferences URL
http://clark.lcs.mit.edu:8001/h/shivers/code/web.tar.gz

then the server would pass the following path to the top-level handler:
("h" "shivers" "code" "web.tar.gz")

The path argument’s pre-parsed representation as a string list makes it
easy for the request handler to implement recursive operations dispatch
on URL paths.
The request handler must return an HTTP response.

14

2.5.1 Basic Request Handlers

The web server comes with a useful toolbox of basic request handlers that can
be used and built upon. The following procedures are exported by the httpd-
basic-handlers structure:

null-request-handler request-handler

This request handler always generated a not-found error response, no
patter what the request is.

(make-predicate-handler predicate handler default-handler) −→ request-handler procedure

The request handler returned by this procedure first calls predicate on its
path and request; it then acts like handler if the predicate returned a true
vale, and like default-handler if the predicate returned #f.

(make-host-name-handler hostname handler default-handler) −→ request-handler procedure

The request handler returned by this procedure compares the host name
specified in the request with hostname: if they match, it acts like handler,
otherwise, it acts like default-handler.

(make-path-predicate-handler predicate handler default-handler) −→ request-handler procedure

The request handler returned by this procedure first calls predicate on its
path; it then acts like handler if the predicate returned a true vale, and like
default-handler if the predicate returned #f.

(make-path-prefix-handler path-prefix handler default-handler) −→ request-handler procedure

This constructs a request handler that calls handler on its argument if
path-prefix (a string) is the first element of the requested path; it calls
handler on the rest of the path and the original request. Otherwise, the
handler acts like default-handler.

(alist-path-dispatcher handler-alist default-handler) −→ request-handler procedure

This procedure takes as arguments an alist mapping strings to path han-
dlers, and a default request handler, and returns a handler that dispatches
on its path argument. When the new request handler is applied to a path

("foo" "bar" "baz")

it uses the first element of the path—foo—to index into the alist. If it
finds an associated request handler in the alist, it hands the request off to
that handler, passing it the tail of the path, in this case

("bar" "baz")

15

On the other hand, if the path is empty, or the alist search does not yield a
hit, we hand off to the default path handler, passing it the entire original
path,

("foo" "bar" "baz")

This procedure is how you say: “If the first element of the URL’s path
is ‘foo’, do X; if it’s ‘bar’, do Y; otherwise, do Z.” The slash-delimited
URI path structure implies an associated tree of names. The request-
handler system and the alist dispatcher allow you to procedurally define
the server’s response to any arbitrary subtree of the path space.

Example: A typical top-level request handler is

(define ph
(alist-path-dispatcher

‘(("h" . ,(home-dir-handler "public html"))
("cgi-bin" . ,(cgi-handler "/usr/local/etc/httpd/cgi-bin"))
("seval" . ,seval-handler))

(rooted-file-handler "/usr/local/etc/httpd/htdocs")))

This means:

• If the path looks like ("h" "shivers" "code" "web.tar.gz"), pass
the path ("shivers" "code" "web.tar.gz") to a home-directory
request handler.

• If the path looks like ("cgi-bin" "calendar"), pass (”calendar”)
off to the CGI request handler.

• If the path looks like ("seval" ...), the tail of the path is passed
off to the code-uploading seval path handler.

• Otherwise, the whole path is passed to a rooted file handler, who
will convert it into a filename, rooted at /usr/local/etc/httpd/
htdocs, and serve that file.

2.5.2 Static Content Request Handlers

The request handlers described in this section are for serving static
content off directory trees in the file system. They live in the
httpd-file-directory-handlers structure.

The request handlers in this section eventually call an internal procedure
named file-serve for serving files which implements a simple directory-
generation service using the following rules:

• If the filename has the form of a directory (i.e., it ends with a slash), then
file-serve actually looks for a file named index.html in that directory.

16

• If the filename names a directory, but is not in directory form (i.e., it
doesn’t end in a slash, as in “/usrinclude” or “/usrraj”), then file-
serve sends back a “301 moved permanently” message, redirecting the
client to a slash-terminated version of the original URL. For example,
the URL http://clark.lcs.mit.edu/ shivers would be redirected to
http://clark.lcs.mit.edu/ shivers/

• If the filename names a regular file, it is served to the client.

The httpd-file-directory-handlers all take an options value as an argu-
ment, similar to the options for httpd itself.

The options argument can be constructed through a number of procedures
with names of the form with-.... Each of these procedures either creates a
fresh options value or adds a configuration parameter to an old options argu-
ment. The configuration parameter value is always the first argument, the (old)
options value the optional second one. Here they are:

(with-file-name->content-type proc [options]) −→ options procedure

This specifies a procedure for determining the MIME content type
(“text/html,” “application/octet-stream” etc.) from a file name. Proc
takes a file name as an argument and must return a string. (This is rele-
vant in directory listings.) The default is a procedure able to handle the
more common file extensions.

(with-file-name->content-encoding proc [options]) −→ options procedure

This specifies a procedure for determining the MIME content encoding
(if the file is compressed, gzipped, etc.) from a file name. (This is relevant
in directory listings.) Proc takes a file name as an argument and must
return two values: the equivalent, unencoded file name (i.e., without the
trailing .Z or .gz) and a string representing the content encoding.

(with-file-name->icon-url proc [options]) −→ options procedure

This specifies a procedure for determining the icon to be displayed next
to a file name in a directory listing. Proc takes a file name as an argument
and must return a URL for the corresponding icon or #f.

(with-blank-icon-url file-name-or-#f [options]) −→ options procedure

This specifies a file name (or its absence) for the special icon that must be
as wide as the icons returned by the previous procedure but that is blank.

(with-back-icon-url file-name-or-#f [options]) −→ options procedure

This specifies a file name (or its absence) for the special icon that is dis-
played next to the “parent directory” link in directory listings.

17

(with-unknown-icon-url file-name-or-#f [options]) −→ options procedure

This specifies a file name (or its absence) for the special icon that is dis-
played next to the unknown entries in directory listings.

The make-file-directory-options procedure eases the construction of
the options argument:

(make-file-directory-options transformer value . . .) −→ options procedure

This constructs an options value from an argument list of parameter
transformers and parameter values. The arguments come in pairs, each
an option transformer from the list above, and a value for that parameter.
Make-file-directory-options returns the resulting options value.

Here are procedure for constructing static content request handlers:

(rooted-file-handler root [options]) −→ request-handler procedure

This returns a request handler that serves files from a particular root
in the file system. Only the GET operation is provided. The path argu-
ment passed to the handler is converted into a filename, and appended
to root. The file name is checked for .. components, and the transaction
is aborted if it does. Otherwise, the file is served to the client.

(rooted-file-or-directory-handler root [options]) −→ request-handler procedure

Dito, but also serve directory indices for directories without index.html.

(home-dir-handler subdir [options]) −→ request-handler procedure

This procedure builds a request handler that does basic file serving out
of home directories. If the resulting request-handler is passed a path of the
form (user . file-path), then it serves the file subdir/file-path inside the
user’s home directory.

The request handler only handles GET requests; the filename is not al-
lowed to contain .. elements.

(tilde-home-dir-handler subdir default-request-handler [options]) −→ request-handler procedure

This returns request handler that examines the car of the path. If it is a
string beginning with a tilde, e.g., " ziggy", then the string is taken to
mean a home directory, and the request is served similarly to a home-
dir-handler request handler. Otherwise, the request is passed off in its
entirety to the default-request-handler.

18

2.6 CGI Server

The procedure(s) described here live in the httpd-cgi-handlers structure.

(cgi-handler bin-dir [cgi-bin-path]) −→ request-handler procedure

Returns a request handler for CGI scripts located in bin-dir. Cgi-bin-dir
specifies the value of the PATH variable of the environment the CGI scripts
run in. It defaults to

/bin:/usr/bin:/usr/ucb:/usr/bsd:/usr/local/bin

The CGI scripts are called as specified by CGI/1.12.

Note that the CGI handler looks at the name of the CGI script to deter-
mine how it should be handled:

• If the name of the script starts with ‘nph-’, its reply is read, the
RFC 822-fields like Content-Type and Status are parsed and the
client is sent back a real HTTP reply, containing the rest of the
script’s output.

• If the name of the script doesn’t start with ‘nph-’, its output is sent
back to the client directly. If its return code is not zero, an error
message is generated.

2.7 Scheme-Evaluating Request Handlers

The httpd-seval-handlers structure contains a handler which demonstrates
how to safely evaluate Scheme code uploaded from the client to the server.

seval-handler request-handler

This request handler is suitable for receiving code entered into an HTML
text form. The Scheme code being uploaded is being POSTed to the
server (from a form). The code should be URI-encoded in the URL
as program=〈stuff〉. stuff must be an (URI-encoded) Scheme expression
which the handler evaluates in a separate subprocess. (It waits for 10 sec-
onds for a result, then kills the subprocess.) The handler then prints the
return values of the Scheme code.

The following structures define environments that are R5RSwithout fea-
tures that could examine or effect the file system. You can also use them as
models of how to execute code in other protected environments in Scheme 48.

2see http://hoohoo.ncsa.uiuc.edu/cgi/interface.html for a sort of specification.

19

http://hoohoo.ncsa.uiuc.edu/cgi/interface.html

2.7.1 The loser structure

The loser package exports only one procedure:

(loser name) −→ nothing procedure

Raises an error like “Illegal call name”.

2.7.2 The toothless structure

The toothless structure contains everything of R5RSexcept that following
procedure cause an error if called:

• call-with-input-file

• call-with-output-file

• load

• open-input-file

• open-output-file

• transcript-on

• with-input-from-file

• with-input-to-file

• eval

• interaction-environment

• scheme-report-environment

2.7.3 The toothless-eval structure

(eval-safely expression) −→ any result procedure
Creates a brand-new structure, imports the toothless structure, and
evaluates expression in it. When the evaluation is done, the environ-
ment is thrown away, so expression’s side-effects don’t persist from one
eval-safely call to the next. If expression raises an error exception,
eval-safely returns #f.

20

2.8 Writing Request Handlers

2.8.1 Parsing HTML Forms

In HTML forms, field data are turned into a single string, of the form
〈name 〉=〈val 〉&〈name 〉=〈val 〉.... The parse-html-forms structure provides
simple functionality to parse these strings.

(parse-html-form-query string) −→ alist procedure

This parses "foo=x&bar=y" into (("foo" . "x") ("bar" . "y")).
Substrings are plus-decoded (i.-e. plus characters are turned into spaces)
and then URI-decoded.

This implementation is slightly sleazy as it will successfully parse a string
like "a&b=c&d=f" into (("a&b" . "c") ("d" . "f")) without a com-
plaint.

2.9 SSL encryption with Apache

Network traffic with a HTTP server is usually encrypted and protected from
manipulation using the cryptographic algorithm provided by an implementa-
tion of the secure socket layer, SSL for short. SUnet does not have support for SSL
yet. However, an Apache web-server with SSL support can be configured as
a proxy. In this setup the Apache web-server accepts encrypted requests and
forwards them to a SUnet web-server running locally. This section describes
how to set up Apache as an encrypting proxy, assuming the reader has basic
knowledge about Apache and its configuration directives.

The following excerpt shows a minimalist SSL virtual host that forwards
requests to a SUnet server.

<VirtualHost 134.2.12.82:443>
DocumentRoot "/www/some-domain/htdocs"
ServerName www.some-domain.de
ServerAdmin admin@some-domain.de
ErrorLog /www/some-domain/logs/error_log

ProxyRequests off
ProxyPass / http://localhost:8080/
ProxyPassReverse / http://localhost:8080/

SSLEngine on
SSLRequireSSL

21

SSLCertificateFile /www/some-domain/cert/some-domain.cert
SSLCertificateKeyFile /www/some-domain/cert/some-domain.key

</VirtualHost>

First, a virtual host is added to Apache’s configuration file. This virtual host
listens for incoming connections on port 443, which is the standard port for
encrypted HTTP traffic. SSLRequireSSL ensures that server accepts encrypted
connections only.

In terms of the Apache documentation, the web-server acts as a so called
reverse proxy. The option ProxyRequests has a misleading name. Setting this
option to off does only turns off Apache’s facility to act as a forward proxy and
has no effect on the configuration directives for reverse proxies. Actually, turn-
ing on ProxyRequests is dangerous, because this turns Apache into a proxy
server that can be used from anywhere to access any site that is accessible to
the Apache server.

In this setting, all requests get forwarded to a SUnet web-server which lis-
tens for incoming connections on localhost port 8080 only, thus, it is not reach-
able from a remote machine. Apache forwards all requests to the host and
port specified by the ProxyPass directive. ProxyPassReverse specifies how
Location-Header fields of HTTP redirect messages send by the SUNet server
are translated.

22

Chapter 3

Parsing and Processing URIs

The uri structure contains a library for dealing with URIs.

3.1 Notes on URI Syntax

A URI (Uniform Resource Identifier) is of following syntax:

[scheme] : path [? search] [# fragid]

Parts in brackets may be omitted.

The URI contains characters like : to indicate its different parts. Some spe-
cial characters are escaped if they are a regular part of a name and not indicators
for the structure of a URI. Escape sequences are of following scheme: %hh where
h is a hexadecimal digit. The hexadecimal number refers to the ASCII of the es-
caped character, e.g. %20 is space (ASCII 32) and %61 is ‘a’ (ASCII 97). This
module provides procedures to escape and unescape strings that are meant to
be used in a URI.

3.2 Procedures

(parse-uri uri-string) −→ scheme path search frag-id procedure
Parses an uri-string into its four fields. The fields are not unescaped, as the
rules for parsing the path component in particular need unescaped text,
and are dependent on scheme. The URL parser is responsible for doing
this. If the scheme, search or fragid portions are not specified, they are
#f. Otherwise, scheme, search, and fragid are strings. path is a non-empty
string list—the path split at slashes.

23

Here is a description of the parsing technique. It is inwards from both ends:

• First, the code searches forwards for the first reserved character (=, ;, /, #,
?, : or space). If it’s a colon, then that’s the scheme part, otherwise there
is no scheme part. At all events, it is removed.

• Then the code searches backwards from the end for the last reserved char.
If it’s a sharp, then that’s the fragid part—remove it.

• Then the code searches backwards from the end for the last reserved char.
If it’s a question-mark, then that’s the search part—-remove it.

• What’s left is the path. The code split it at slashes. The empty string
becomes a list containing the empty string.

This scheme is tolerant of the various ways people build broken URI’s out there
on the Net1, e.g. = is a reserved character, but used unescaped in the search-
part. It was given to me2 by Dan Connolly of the W3C and slightly modified.

(unescape-uri string [start] [end]) −→ string procedure

Unescape-uri unescapes a string. If start and/or end are specified, they
specify start and end positions within string should be unescaped.

This procedure should only be used after the URI was parsed, since unescaping
may introduce characters that blow up the parse—that’s why escape sequences
are used in URIs.

uri-escaped-chars char-set

This is a set of characters (in the sense of SRFI 14) which are escaped in
URIs. RFC 2396 defines this set as all characters which are neither letters,
nor digits, nor one of the following characters: -, _, ., !, ~, *, ’, (,).

(escape-uri string [escaped-chars]) −→ string procedure

This procedure escapes characters of string that are in escaped-chars.
Escaped-chars defaults to uri-escaped-chars.

Be careful with using this procedure to chunks of text with syntactically mean-
ingful reserved characters (e.g., paths with URI slashes or colons)—they’ll be
escaped, and lose their special meaning. E.g. it would be a mistake to apply
escape-uri to

//lcs.mit.edu:8001/foo/bar.html

1So it does not absolutely conform to RFC 1630.
2That’s Olin Shivers.

24

because the slashes and colons would be escaped.

(split-uri uri start end) −→ list procedure

This procedure splits uri at slashes. Only the substring given with start
(inclusive) and end (exclusive) as indices is considered. start and end − 1
have to be within the range of uri. Otherwise an index-out-of-range
exception will be raised.

Example:

(split-uri "foo/bar/colon" 4 11)

returns

("bar" "col")

(uri-path->uri path) −→ string procedure

This procedure generates a path out of a URI path list by inserting slashes
between the elements of plist.

If you want to use the resulting string for further operation, you should escape
the elements of plist in case they contain slashes, like so:

(uri-path->uri (map escape-uri pathlist))

(simplify-uri-path path) −→ list procedure

This procedure simplifies a URI path. It removes "." and "/.." entries
from path, and removes parts before a root. The result is a list, or #f if
the path tries to back up past root.

According to RFC 2396, relative paths are considered not to start with /. They
are appended to a base URL path and then simplified. So before you start to
simplify a URL try to find out if it is a relative path (i.e. it does not start with a
/).

Examples:

(simplify-uri-path (split-uri "/foo/bar/baz/.." 0 15))
⇒ ("" "foo" "bar")

(simplify-uri-path (split-uri "foo/bar/baz/../../.." 0 20))
⇒ ()

(simplify-uri-path (split-uri "/foo/../.." 0 10))
⇒ #f

(simplify-uri-path (split-uri "foo/bar//" 0 9))

25

⇒ ("")

(simplify-uri-path (split-uri "foo/bar/" 0 8))
⇒ ("")

(simplify-uri-path (split-uri "/foo/bar//baz/../.." 0 19))
⇒ #f

26

Chapter 4

Parsing and Processing URLs

This modules contains procedures to parse and unparse URLs. Until now, only
the parsing of HTTP URLs is implemented.

4.1 Server Records

A server value describes path prefixes of the form user:password@host:port.
These are frequently used as the initial prefix of URLs describing Internet re-
sources.

(make-server user password host port) −→ server procedure
(server? thing) −→ boolean procedure
(server-user server) −→ string-or-#f procedure
(server-password server) −→ string-or-#f procedure
(server-host server) −→ string-or-#f procedure
(server-port server) −→ string-or-#f procedure

Make-server creates a new server record. Each slot is a decoded string
or #f. (Port is also a string.)

server? is the corresponding predicate, server-user, server-password,
server-host and server-port are the correspondig selectors.

(parse-server path default) −→ server procedure
(server->string server) −→ string procedure

Parse-server parses a URI path path (a list representing a path, not a
string) into a server value. Default values are taken from the server default
except for the host. The values are unescaped and stored into a server
record that is returned. Fatal-syntax-error is called, if the specified
path has no initial to slashes (i.e., it starts with ‘//. . . ’).

27

server->string just does the inverse job: it unparses server into a string.
The elements of the record are escaped before they are put together.

Example:

> (define default (make-server "andreas" "se ret" "www.sf.net" "80"))
> (server->string default)
"andreas:se%20ret@www.sf.net:80"
> (parse-server ’("" "" "foo%20bar@www.scsh.net" "docu" "index.html")

default)
’#server
> (server->string ##)
"foo%20bar:se%20ret@www.scsh.net:80"

For details about escaping and unescaping see Chapter 3.

4.2 HTTP URLs

(make-http-url server path search frag-id) −→ http-url procedure
(http-url? thing) −→ boolean procedure
(http-url-server http-url) −→ server procedure
(http-url-path http-url) −→ list procedure
(http-url-search http-url) −→ string-or-#f procedure
(http-url-frag-ment-identifier http-url) −→ string-or-#f procedure

Make-http-url creates a new httpd-url record. Server is
a record, containing the initial part of the address (like
anonymous@clark.lcs.mit.edu:80). Path contains the URL’s URI
path (a list). These elements are in raw, unescaped format. To con-
vert them back to a string, use (uri-path->uri (map escape-uri
pathlist)). Search and frag-id are the last two parts of the URL. (See
Chapter 3 about parts of an URI.)

Http-url? is the predicate for HTTP URL values, and http-url-server,
http-url-path, http-url-search and http-url-fragment-identifier
are the corresponding selectors.

(parse-http-url path search frag-id) −→ http-url procedure
(http-url->string http-url) −→ string procedure

This constructs an HTTP URL record from a URI path (a list of path com-
ponents), a search, and a frag-id component.

Http-url->string just does the inverse job. It converts an HTTP URL
record into a string.

Note: The URI parser parse-uri maps a string to four parts: scheme, path,
search and frag-id (see Section 3.2 for details). If scheme is http, then the

28

other three parts can be passed to parse-http-url, which parses them into
a http-url record. All strings come back from the URI parser encoded. Search
and frag-id are left that way; this parser decodes the path elements. The first
two list elements of the path indicating the leading double-slash are omitted.

The following procedure combines the jobs of parse-uri and
parse-http-url:

(parse-http-url-string string) −→ http-url procedure

This parses an HTTP URL and returns the corresponding URL value;
it calls fatal-syntax-error if the URL string doesn’t have an http
scheme.

29

Chapter 5

Writing CGI Scripts in
Scheme

The cgi-scripts structure provides functionality useful for writing CGI
scripts in Scheme.

(cgi-form-query) −→ data-alist procedure

CGI scripts receive their parameters in various ways, depending on how
they were called (e.g. by GET method).

This procedure translates the delivered form data into an alist of
decoded strings, using the environment variables set by the server
(REQUEST METHOD, QUERY STRING (for a GET request), CONTENT LENGTH (for
a POST request)). So a query string like

button=on&reply=Oh,%20yes

becomes an alist

(("button" . "on") ("reply" . "Oh, yes"))

Cgi-form-query only works for GET and POST methods.

30

Chapter 6

SUrflet server

The SUrflet server enables you to write server side scripted
web programs in Scheme. There are lots of example files in
scheme/httpd/surflet/webserver/root/surflets from which you can
copy freely.

6.1 Howto

This howto gives a short introduction in how to write a SUrflet. It is concen-
trated on the practical side rather on describing the SUrflet API in detail to
give you instant succes in running your own surflets. See section 6.2 for the
(technical) API description.

6.1.1 Introduction

For those who don’t know it already, SUrflets are pieces of code that can be
executed interactively through a website. There is a SUrflet handler who ad-
ministrates their execution and suspension. The SUrflet handler is part of the
SUnet webserver. SUrflets ease the implementation of web applications in
two ways, compared to other server-side scripting tools like JavaTMServlets
or Microsoft R©Active Server Pages or PHP:

1. SUrflets have an automatic program flow control like any other usual
program (but unlike usual web programs), i.e.the web designer doesn’t
have to care about session management at all. The sequence of the web
pages result from their appearance in the program like the print state-
ments in any other usual program.

31

2. SUrflets come along with a library for robust user interaction. SUrflets
represent interaction elements of the web page like text input fields or
dropdown lists in the SUrflet program by specific objects. A web designer
can plug in these objects into a website and use them to read out the user
input.

The following sections probably assume that you have basic knowledge
of the SUnet webserver and scsh. The environment variable $sunet refers
to the top level directory of your sunet installation. On my system this is
/home/andreas/sw/sunet.

6.1.2 How to run the SUnet webserver that handles SUrflets

The following sections will show pieces of SUrflet code you might want to try
out. Therefore you need the SUnet webserver running with the ability to serve
SUrflets. This section tells you how to do it.

Obtaining necessary packages You need Oleg’s SSAX package (for scsh), to
be able to use surflets:

• Download Oleg’s SSAX package from http://prdownloads.sf.net/
ssax/ssax-sr5rs-plt200-4.9.tar.gz?download.

• Download the SSAX package kit from http://lamp.epfl.ch/~schinz/
scsh_packages.

• Uncompress and untar both tarballs in the same directory. This will cre-
ate a directory called SSAX, to which I will refer to as $SSAX. The package
kit will add a file pkg-def.scm to the SSAX directory.

• Install SSAX as a scsh package by issuing the command
scsh-install-pkg --prefix /path/to/your/package/root in the
$SSAX directory. If you don’t yet have the packaging utility of Michel
Schinz, you can obtain it from http://lamp.epfl.ch/~schinz/scsh_
packages.

If you don’t want to install SSAX with the packaging utility, you can
adjust the scripts to directly load the SSAX package definitions from
$SSAX/lib/packages.scm. Note that the original file has a typo which you can
correct with

cd $SSAX
patch -p1 < $sunet/httpd/surflets/SSAX-goodhtml-patch

32

http://prdownloads.sf.net/ssax/ssax-sr5rs-plt200-4.9.tar.gz?download
http://prdownloads.sf.net/ssax/ssax-sr5rs-plt200-4.9.tar.gz?download
http://lamp.epfl.ch/~schinz/scsh_packages
http://lamp.epfl.ch/~schinz/scsh_packages
http://lamp.epfl.ch/~schinz/scsh_packages
http://lamp.epfl.ch/~schinz/scsh_packages

Starting the SUrflet server You can start the SUnet webserver along with the
SUrflet-handler now. The SUnet distribution comes with a script that does this
for you:

$ /path/to/your/package/root/sunet/web-server/start-surflet-server

Please be patient, scsh has to load a lot of libraries. If the loading succeeds
you will see something like this:

[andreas@hgt web-server]$./start-surflet-server
Loading...
reading options: ()
Going to run SUrflet server with:
htdocs-dir: /home/andreas/bin/lib/scsh/0.6/sunet-2.1/web-server/root/htdocs
surflet-dir: /home/andreas/bin/lib/scsh/0.6/sunet-2.1/web-server/root/surflets
images-dir: /home/andreas/bin/lib/scsh/0.6/sunet-2.1/web-server/root/img
port: 8080
log-file-name: /tmp/httpd.log
a maximum of 5 simultaneous requests, syslogging activated,
and home-dir-handler (public_html) activated.

NOTE: This is the SUrflet server. It does not support cgi.

This means the server is up and running. Try to connect to http://
localhost:8080 with your browser and you will see the welcome page of the
SUnet server. There’s a link to the SUrflets homepage. You can also already try
out some of the SUrflets that come with the distribution.

You will probably notice a long response time the first time you load the
first SUrflet. This is because the server has to load the SUrflet libraries. The
server handles further requests to SUrflets faster.

If the port the SUrflet server tries to use is occupied, you will see an error
message similar to this one:

Error: 98
"Address already in use"
#Procedure 11701 (%bind in scsh-level-0)
4
2
(0 . 8080)

In this case, pass another port number to the script, e.g.8000:

start-surflet-server -p 8000

The --help option will show you more parameters that you can adjust, but
you won’t need them for this howto.

33

http://localhost:8080
http://localhost:8080

6.1.3 How to send web pages

This section will discuss some of the various ways in which you can send a
web page to a browser that contacted your SUrflet.

My first SUrflet

Traditionally, your first program in any programming language prints some-
thing like “Hello, World!”. We follow this tradition:

(define-structure surflet surflet-interface

(open surflets

scheme-with-scsh)

(begin

(define (main req)

(send-html/finish

’(html (body (h1 "Hello, world!")))))

))

You can either save a file with that content in the SUrflets directory the
server mentioned at startup or you can use the file howto/hello.scm that
comes along with the SUrflets distribution and which is located in the server’s
standard SUrflets directory. Let’s go through the small script step by step:

(define-structure surflet surflet-interface

This defines a module named surflet which implements the interface
surflet-interface. surflet-interface just states that the module exports
a function named main to which we will come shortly. For those of you who
know about the scsh module system: Yes, SUrflets are basically scsh modules
that are loaded dynamically during run time.

(open surflets
scheme-with-scsh)

The open form lists all the modules the SUrflet needs. You will proba-
bly always need the two modules that are stated here (namely surflets and
scheme-with-scsh). If you need other modules, like srfi-13 for string manip-
ulation, this is the place where you want to state it.

(begin

This just opens the body of the SUrflet. All your SUrflet code goes here.1

1If you know about scsh modules, you probably also know that there is a file clause that you
could use to place the code in a file instead or along with the begin clause.

34

(define (main req)

Here is the main function that the interface declared this SUrflet will im-
plement. The main function is the entry point to your SUrflet: The server calls
this function every time a user browses to your SUrflet the first time. The
server calls main with one argument: a representation of the inital request of
the browser. We don’t have to worry about that at this point.

(send-html/finish
’(html (body (h1 "Hello, world!")))))

))

send-html/finish is one of three function you will regularly use to send
web pages to the browser. The other two functions are send-html and
send-html/suspend. send-html/finish – as the name already suggests –
sends a HTML page to the browser and finishes the SUrflet. send-html just
sends the HTML page and does not return. send-html/suspend sends the
HTML page and suspends the SUrflet, i.e.it waits until the user continues
with the SUrflet, e.g.by submitting a webform. We will discuss send-html and
send-html/suspend in detail later. I will refer to these three functions as the
sending functions.

In a SUrflet, HTML pages are represented as lists, or, to be more precise, as
SXML (S-expression based XML). The first element of a SXML list is a symbol
stating the HTML tag. The other elements of a SXML list are the contents that
are enclosed by this HTML tag. The contents can be other SXML lists, too. Here
are some examples of SXML lists and how they translate to HTML:

SXML: ’(p "A paragraph.")}
HTML: <p>A paragraph.\htmltag{/p}}

SXML: ’(p "A paragraph." (br) "With break line.")}
HTML: <p>A paragraph.
With break line.</p>}

SXML: ’(p "Nested" (p "paragraphs"))}
HTML: <p>Nested<p>paragraphs</p></p>}

Attributes are stated by a special list whose first element is the at-symbol.
The attribute list must be the second element in the list:

SXML: ’(a (@ (href "attr.html")) "Attributed HTML tags.")
HTML: Attributed HTML tags.

SXML: ’(a (@ (href "attr2.html") (target "_blank")) "2 attributes.")}
HTML: 2 attributes.}

35

As you see from the SUrflet example, send-html/finish expects SXML as
an argument. In the example, the SXML translates to the following HTML
code:

<html><body><h1>Hello, world!</h1>
</body>
</html>

Please note, that there is no check for valid HTML or even XHTML here.
The only thing the translation process takes care of are special characters in
strings like the ampersand (&). The translation process replaces them by their
HTML representation (e.g., &) so you don’t have to worry about that when
you use strings. Everything else like using valid HTML tags or valid attributes
is your responsibility.

Dynamic content

Let’s extend our first SUrflet example by some dynamic content, e.g.by display-
ing the current time using scsh’s format-date function. As the HTML page is
basically represented as a list, this can be done like this:

(define-structure surflet surflet-interface

(open surflets

scheme-with-scsh)

(begin

(define (main req)

(send-html/finish

‘(html (body (h1 "Hello, world!")

(p "The current date and time is "

,(format-date "~H:~M:~S ~p ~m/~d/~Y"

(date)))))))

))

This SUrflet can be found in howto/hello-date.scm. The beginning of this
SUrflet is the same as in the previous example. The difference lies in the ar-
gument to send-html/finish. Note that the argument starts with a backquote
(‘) rather than with a regular quote (’) as in the previous example.

Instead of passing a “static” list, i.e.a list whose contents are given before
execution, this SUrflet uses the quasiquote and unquote feature of Scheme to
create a “dynamic” list, i.e.a list whose contents are given only during exe-
cution. A “dynamic” list is introduced by a backquote (‘) and its dynamic
contents are noted by commata (,). Thus, if the SUrflet is executed while I am
writing this howto, the argument to send-html/finish above is translated to

36

’(html (body (h1 "Hello, world!")
(p "The current date and time is "

"13:09:03 PM 11/18/2003")))))

before it is passed to send-html/finish. Thus, using dynamic content can be
easily done with Scheme’s quasiquote and unquote feature. Of course, you can
build your list in any way you want; the quasiquote notation is just a conve-
nient way to do it.

Several web pages in a row

The previous example SUrflets only showed one page and finished afterwards.
Here, we want to present two web pages in a row. We use the previously
mentioned function send-html/suspend, which suspends after it has sent the
page and continues when the user clicked for the next page. In contrast to
send-html/finish, that expected SXML, send-html/suspend expects a func-
tion that takes an argument and returns SXML. The parameter the function
gets (here: k-url) is the URL that points to the next page:2

(define-structure surflet surflet-interface

(open surflets

scheme-with-scsh)

(begin

(define (main req)

(send-html/suspend

(lambda (k-url)

‘(html (body (h1 "Hello, world!")

(p (a (@ (href ,k-url)) "Next page -->"))))))

(send-html/finish

’(html (body (h1 "Hello, again!")))))

))

This SUrflet can be found in howto/hello-twice.scm. This example first
displays a web page with the message “Hello, world!” and a link to the
next page labeled with “Next page –>”. When the user clicks on the pro-
vided link, send-html/suspend returns and the next statement after the call
to send-html/suspend is executed. Here it is send-html/finish which shows
a web page with the message “Hello, again!”.

When send-html/suspend returns, (almost) the complete context of the
running SUrflet is restored. Thus, every variable in the SUrflet will retain its
value during suspension. The consequence is that you don’t have to worry
about sessions, sesssion variables and alike. The user can freely use the back

2In the API this URL is called the continuation URL.

37

button of her browser or clone a window while the SUrflet will keep on re-
sponding in the expected way. This is all automatically managed by the
SUrflet-handler.

The only exception are variables whose values are changed by side effects,
e.g.if you change a variable via set!. These variables keep their modified val-
ues, allowing communication between sessions of the same SUrflet.3

Begin and end of sessions

So far I don’t have mentioned too much details about sessions. The reason is,
as mentioned before, that the SUrflet handler takes care of the session automat-
ically as described in the previous paragraph.

The only thing you have to worry about is when your session ends. As long
as your session hasn’t been finished by send-html/finish, the user can move
freely between the web pages your SUrflet provides. Once you’ve finished the
session via send-html/finish, this freedom ends. As the session is over, the
user will get an error message when he tries to recall some web page from the
server. The server will tell the user about the possible reasons for the error
(namely that most likely the session was finished) and provides a link to the
beginning of a new session.

Thus, send-html/suspend suspends the current execution of a SUrflet,
returning with the request for the next web page of your SUrflet and
send/finish finishes the session. The third sending function is send-html
which just sends a web page. send-html does not return and does not touch
the session of your SUrflet instance.

Abbreviations in SXML

The example in subsection “Several web pages in a row” wrote down the link
to the next web page explicitly via the “a”-tag. As websites contain a lot of
links, the sending functions (like send-html/finish) allow an abbreviation.
The following SXML snippets are equivalent:

(a (@ (href ,k-url)) "Next page -->")
(url ,k-url "Next page -->")

url expects the target address as the next element and includes every text
afterwards as part of the link.

3If you want to change a variable via side effects but you don’t want to interfere with other
sessions, you can use set-session-data! and get-session-data. See the API documentation in
section 6.2 for further information.

38

There are also some other abbreviations. (nbsp) inserts ‘ ’ into the
HTML, (*COMMENT* ...) inserts a comment, and with (plain-html ...)
you can insert arbitrary HTML code (i.e.strings) directly , without any string
conversions. The last abbreviation, surflet-form, is discussed in the next sec-
tion.

6.1.4 How to write web forms

The SUrflets come along with a libary for easy user interaction. The following
subsections will show how to write web forms and how to get the data the user
has entered.

Simple web forms

Let’s write a SUrflet that reads user input and prints it out on the next page:

(define-structure surflet surflet-interface

(open surflets

scheme-with-scsh)

(begin

(define (main req)

(let* ((text-input (make-text-field))

(submit-button (make-submit-button))

(req (send-html/suspend

(lambda (k-url)

‘(html

(body

(h1 "Echo")

(surflet-form ,k-url

(p "Please enter something:"

,text-input

,submit-button)))))))

(bindings (get-bindings req))

(user-input (input-field-value text-input bindings)))

(send-html/finish

‘(html (body

(h1 "Echo result")

(p "You’ve entered: ’" ,user-input "’."))))))

))

Here are the details to the code in main:

(define (main req)
(let* ((text-input (make-text-field))

(submit-button (make-submit-button))

39

make-text-field and make-submit-button define two user interaction el-
ements: a text input field and a submit button. SUrflets represent user interac-
tion elements by Input-field objects. Thus, user interaction elements are first
class values in SUrflet, unlike in many other web scripting languages, e.g.Java
surflets, PHP or Microsoft Active Server Pages, i.e.you have a representation
of a user interaction element in your program that you can pass to functions,
receive them as return values, etc. You’ll soon see the advantages of this ap-
proach.

(req (send-html/suspend
(lambda (k-url)
‘(html
(body
(h1 "Echo")
(surflet-form ,k-url

(p "Please enter something:"
,text-input
,submit-button)))))))

Instead of discarding the return value of send-html/suspend as in the ex-
amples of the previous section, this time we’ll save the return value, as it will
contain the data the user has entered in our text input field.

The definition of the website is as described in the previous section except
for the new abbreviation surflet-form. surflet-form creates the HTML code
for a web form and expects as its next value the URL to the next webpage
as provided by send-html/suspend, here named k-url. The remaining argu-
ments constitute the content of the web form. Thus, the code above is equal to
the following SXML:

(form (@ (action ,k-url) (method "GET"))
(p "Please enter something:"

,text-input
,submit-button))

If you want to use the POST method instead of the default GET method,
add the symbol ’POST after the URL:

(surflet-form ,k-url
POST
(p "Please enter something:"

,text-input
,submit-button))

40

The web page send-html/suspend sends to the browser looks like in
figure [missing]. After the user has entered his data into the web form,
send-html/suspend returns with the request object of the browser for the next
page. This request object contains the data the user has entered.

(bindings (get-bindings req))

With the function get-bindings we pull out the user data of the request
object. Here we save the user data into the variable bindings. get-bindings
works for both request methods GET and POST.

(user-input (input-field-value text-input bindings)))

With the function input-field-value and the extracted user data we can
read the value for an input-field. Here, we want to know what the user has
entered into the text-input-field.

(send-html/finish
‘(html (body

(h1 "Echo result")
(p "You’ve entered: ’" ,user-input "’."))))))

After we have extracted what the user has entered into the text field, we
can show the final page of our SUrflet and echo her input.

Thus, the scheme for user interaction is about the following:

• Create the user interaction elements, input-fields, you want to use in
your web page.

• Send the web page with send-html/suspend to the browser. Plug in the
input-fields in the web page as if they were usual values. Save the
return value of send-html/suspend.

• Extract the user data from the return value of send-html/suspend.

• Read the values of each input-field out of the extracted user data with
input-field-value.

The complete list of functions that create input-fields can be found in the
API in section 6.2.

41

Return types other than strings

As the user interaction elements are first class values in a SUrflet, they can
return other types than strings. For example the SUrflets come with a number
input field, i.e.an input field that accepts only text that can be interpreted as a
number. If the user enters something that is not a number, input-field-value
will return #fas the value of the number input field. If you’d rather want an
error to be raised, you can use raw-input-field-value instead.

Annotated input fields

The return value of an input field need not even be a primitive value. The
SUrflets library allows you to “annotate” your input fields with values which
should be returned indicated by the user’s input. E.g., consider this SUrflet:

(define-structure surflet surflet-interface

(open surflets

handle-fatal-error

scheme-with-scsh)

(begin

(define (main req)

(let* ((select-input-field

(make-select

(map make-annotated-select-option

’("Icecream" "Chocolate" "Candy")

’(1.5 2.0 0.5))))

(req (send-html/suspend

(lambda (k-url)

‘(html

(head (title "Sweet Store"))

(body

(h1 "Your choice")

(surflet-form

,k-url

(p "Select the sweet you want:"

,select-input-field)

,(make-submit-button)))))))

(bindings (get-bindings req))

(price (input-field-value select-input-field

bindings)))

(send-html/finish

‘(html (head (title "Receipt"))

(body

(h2 "Your receipt:")

(p "This costs you $" ,price "."))))))

))

42

Let’s go through the important part of this SUrflet:

(let* ((select-input-field
(make-select
(map make-annotated-select-option

’("Icecream" "Chocolate" "Candy")
’(1.5 2.0 0.5))))

Here we define a select input field (a dropdown list). Instead of only pro-
viding a list of values that shall show up in the dropdown list and later exam-
ining which one was selected and looking up the price for the sweet, we bind
the values in the list with the price while we create the select input field. When
the select input field is shown in the browser, it will show the names of the
sweets. When we lookup the user’s input, we will get the associated price for
the sweet. Again, this works not only with numbers, but with any arbitrary
Scheme value (e.g.functions or records).

Sending error messages

If a user tries to forge a SUrflet-URL (e.g.by extracting the continuation URL
from the HTML source and editing it), your SUrflet has to deal with unex-
pected values. Usually, a forged SUrflet-URL will result in an error that is
raised in one of the SUrflet library functions. If you don’t catch this error, the
SUrflet handler will catch it for you, send an error message to the user and ter-
minate the current session as your SUrflet obviously encountered an unexpected
error and might be in an invalid state. If you don’t want this behavior, you can
catch this error (like any other error that is raised by scsh) and send your own
error message with send-error which is located in the surflets/error pack-
age. The handle-fatal-error package can be useful in this context. Here’s
an example, that modifies the example from the previous subsection (modifi-
cations emphasized):

(define-structure surflet surflet-interface

(open surflets

handle-fatal-error

surflets/error

scheme-with-scsh)

(begin

(define (main req)

(let* ((select-input-field

(make-select

(map make-annotated-select-option

’("Icecream" "Chocolate" "Candy")

’(1.5 2.0 0.5))))

43

(req (send-html/suspend

(lambda (k-url)

‘(html

(head (title "Sweet Store"))

(body

(h1 "Your choice")

(surflet-form

,k-url

(p "Select the sweet you want:"

,select-input-field)

,(make-submit-button)))))))

(bindings (get-bindings req))

(cost (with-fatal-error-handler

(lambda (condition decline)

(send-error (status-code bad-request)

req

"No such option or internal

error. Please try again."))

(raw-input-field-value select-input-field

bindings))))

(send-html/finish

‘(html (head (title "Receipt"))

(body

(h2 "Your receipt:")

(p "This costs you $" ,cost "."))))))

))

Let’s examine the important part of this example:

(cost (with-fatal-error-handler
(lambda (condition decline)
(send-error (status-code bad-request)

req
"No such option or internal
error. Please try again."))

(raw-input-field-value select-input-field
bindings))))

As mentioned in 6.1.4, this SUrflet uses raw-input-field-value instead of
input-field-value because the former raises an error while the latter returns
#f in case of an error.

If a user forges a continuation URL, raw-input-field-value might not
be able to find a valid value for the select-input-field and raises an
error. This error is catched by the error handler which was installed by
with-fatal-error-handler. The error handler uses send-error to send an
error message to the browser. Its first argument is the status code of the error

44

message. See the documentation of the SUnet webserver for different status
codes. The second argument is the request which was processed while the er-
ror occured. The last argument is a free text message to explain the cause of the
error to the user.

While in the original SUrflet the user will still see the resulting receipt web
page with an empty dollar amount and has her session finished, this modified
version will show an error message and won’t finish the session.

It is your choice, which version you choose, i.e.if you let the SUrflet han-
dler handle the occuring error automatically or if you install your own error
handlers and use raw-input-field-value. However, be careful if you use
raw-input-field-value along with check boxes. The HTML standard dic-
tates that an unchecked check box does not appear in the data the browser
sends to the server. Thus, raw-input-field-value won’t find the check box in
the data and raise an error which is not a “real” error as you migh expect it.

Your own input fields

The SUrflet library contains constructors for all input fields that are described
in the HTML 2.0 standard. See the SUrflet API in section 6.2 for a complete
list. The SUrflet library also allows you to create your own input fields, e.g.an
input field that only accepts valid dates as its input. This subsection gives you
a short overview how to do this. You will find the details in the SUrflet API.

Let’s have a look at an SUrflet that uses its own input field. The “input
field”, called nibble input field, consists of four check boxes which represent
bits of a nibble (half a byte). The value of the input field is the number that
the check boxes represent. E.g., if the user checks the last two checkboxes, the
value of the nibble input field is 3.

(define-structure surflet surflet-interface

(open surflets

surflets/my-input-fields

scheme-with-scsh)

(begin

(define (make-nibble-input-fields)

(let ((checkboxes (list (make-annotated-checkbox 8)

(make-annotated-checkbox 4)

(make-annotated-checkbox 2)

(make-annotated-checkbox 1))))

(make-multi-input-field

#f "nibble-input"

(lambda (input-field bindings)

(let loop ((sum 0)

(checkboxes checkboxes))

45

(if (null? checkboxes)

sum

(loop (+ sum (or (input-field-value (car checkboxes)

bindings)

0))

(cdr checkboxes)))))

’()

(lambda (ignore)

checkboxes))))

(define nibble-input-field (make-nibble-input-fields))

(define (main req)

(let* ((req (send-html/suspend

(lambda (new-url)

‘(html (title "Nibble Input Widget")

(body

(h1 "Nibble Input Widget")

(p "Enter your nibble (msb left):")

(surflet-form ,new-url

,nibble-input-field

,(make-submit-button)))))))

(bindings (get-bindings req))

(number (input-field-value nibble-input-field bindings)))

(send-html

‘(html (title "Result")

(body

(h2 "Result")

(p "You’ve entered " ,number "."))))))

))

Let’s go through this SUrflet step by step.

(define-structure surflet surflet-interface
(open surflets

surflets/my-input-fields
scheme-with-scsh)

If you want to create your own input fields, you have to open the
surflets/my-input-fields package.

(begin
(define (make-nibble-input-fields)
(let ((checkboxes (list (make-annotated-checkbox 8)

(make-annotated-checkbox 4)
(make-annotated-checkbox 2)
(make-annotated-checkbox 1))))

46

make-nibble-input-fields is the constructor for our new type of input
field. As mentioned before, we use check boxes to let the user enter the nibble.
We use annotated checkboxes for this purpose whose value is the value in the
nibble.

(make-multi-input-field
#f "nibble-input"

The value of our new input field will depend on the value of several real
input fields. Thus we create a multi input field. If the value depended only on
the browser data that is associated to the name of our input field, we would
use make-input-field instead, which creates a usual input field. E.g., if we
wanted to create a date input field that accepts only valid dates as input and
used a text input field for this purpose, we would use make-input-field.

The first two parameters is the name of the input field and its type. As we
use checkboxes to represent our input field, we don’t need the name field. The
type field is meant for debugging purposes, so you can identify the type of the
input field during a debugging session.

(lambda (input-field bindings)
(let loop ((sum 0)

(checkboxes checkboxes))
(if (null? checkboxes)

sum
(loop (+ sum (or (input-field-value (car checkboxes)

bindings)
0))

(cdr checkboxes)))))

The next parameter is the so called transformer function.
raw-input-field-value calls the transformer function to determine the
value of the input field depending on the given bindings. The transformer
function of a multi input field (which our nibble input field is) gets the input
field and the bindings as parameters. A usual input field would only get the
data that is associated to its name.

The transformer function of our nibble input field goes over each check box,
looks it up in the bindings and adds its value to a sum, if input-field-value
can find it. If it can’t find it, zero is added instead. The value of our nibble
input field is the resulting sum.

The rest of the SUrflet is straight forward and not repeated here again. We
create, use and evaluate the nibble input field as we do with every other input
field.

47

6.1.5 Program flow control

With the techniques shown so far it is rather difficult to create a web page that
has several different successor webpages rather than only one web page. This
section will show you how to do this with the SUrflets. Basically, there are two
different methods how to perform this task. One method is to mark each link
in some way and evaluate the mark after send-html/suspend has returned.
The other method is to bind a callback function to each link that is called when
the user selects the link. This section shows both methods.

Dispatching to more than one successor web page

The basic idea of dispatching is to add a mark to a link and evaluate it after the
user has clicked on a link and send-html/suspend returned. Let’s have a look
at an example. It shows an entry page at which the user states the language in
which she wants to be greeted:

(define-structure surflet surflet-interface

(open surflets

scheme-with-scsh)

(begin

(define (main req)

(let* ((english (make-address))

(german (make-address))

(req (send-html/suspend

(lambda (k-url)

‘(html

(head (title "Multi-lingual"))

(body

(h2 "Select your language:")

(ul

(li (url ,(english k-url) "English")

(li (url ,(german k-url) "Deutsch")))))))))

(bindings (get-bindings req)))

(case-returned-via bindings

((english) (result-page "Hello, how are you?"))

((german) (result-page "Hallo, wie geht es Ihnen?")))))

(define (result-page text)

(send-html/finish

‘(html

(head (title "Greeting"))

(body

(h2 ,text)))))

))

48

Let’s see how main presents the different options:

(define (main req)
(let* ((english (make-address))

(german (make-address))

Of course you don’t have to worry about adding the mark to the links.
Instead, we create the links with make-address.

(req (send-html/suspend
(lambda (k-url)
‘(html
(head (title "Multi-lingual"))
(body
(h2 "Select your language:")
(ul
(li (url ,(english k-url) "English")
(li (url ,(german k-url) "Deutsch")))))))))

make-address returns a function you can call to create the link as we did
here with

(li (url ,(english k-url) "English")

This creates a list item which contains a hyperlink labeled “English”. The
hyperlink is created by the SXML abbreviation url as shown in 6.1.3. Instead
of just passing the continuation URL k-url to url, we create the marked link
by calling the function make-adddress gave us.

(bindings (get-bindings req)))
(case-returned-via bindings
((english) (result-page "Hello, how are you?"))
((german) (result-page "Hallo, wie geht es Ihnen?")))))

After send-html/suspend has returned, we can evaluate which link the
user has clicked by using case-returned-via. case-returned-viaworks sim-
ilar to the regular case of Scheme. It evaluates the body of the form whose
initial list contains the address that the user used to leave the website. E.g., if
the user has selected “German” as her preferred language and clicked on the
link we have named german in our SUrflet, case-returned-via will evaluate
its second form and the SUrflet will display the greeting in German.

case-returned-via is syntactic sugar like the regular case. However,
instead of equal? it uses returned-via. returned-via takes the bindings

49

and and an address and returns #t, if the user left the web page via this ad-
dress (i.e., via the link that is represented by this address) and #fotherwise.
returned-via does not end with a question mark as it might return other val-
ues as well as we will see shortly. Of course, it is your choice if you want to use
case-returned-via or explicitly returned-via.

Annotated dispatching

The approach shown in the previous subsection has one major drawback: the
meaning of an address becomes clear only when you look at the dispatching
section of case-returned-via. This subsection shows you how to link the
meaning and the representation of an address closer together.

We modify the previous code example slightly to this SUrflet (differences
emphasized):

(define-structure surflet surflet-interface

(open surflets

scheme-with-scsh)

(begin

(define (main req)

(let* ((language (make-annotated-address))

(req (send-html/suspend

(lambda (k-url)

‘(html

(head (title "Multi-lingual"))

(body

(h2 "Select your language:")

(ul

(li (url ,(language k-url

"Hello, how are you?")

"English")

(li (url ,(language k-url

"Hallo, wie geht es Ihnen?")

"Deutsch")))))))))

(bindings (get-bindings req)))

(case-returned-via bindings

((language) => result-page))))

(define (result-page text)

(send-html/finish

‘(html

(head (title "Greeting"))

(body

(h2 ,text)))))

))

50

Let’s look at the differing parts:

(let* ((language (make-annotated-address))

To link the meaning with the address itself, we use an annotated address.
As we can annotate the address now, we don’t need two distinct addresses
anymore.

(li (url ,(language k-url
"Hello, how are you?")

"English")
(li (url ,(language k-url

"Hallo, wie geht es Ihnen?")
"Deutsch")))))))))

In addition to the continuation URL k-url we also annotate the address
with a value. Here we use the different greetings as the annotation. The
address can be annotated with any arbitrary Scheme value, e.g.functions or
records.

(case-returned-via bindings
((language) => result-page))))

case-returned-via has an extended syntax similar to cond that it useful
with annotated address. The arrow ‘=>’ calls the following function with the
annotation of the address via which the user has left the web page. You can
extract the annotation yourself with returned-via like this:

(result-page (returned-via language bindings))

This will call result-page with the annotation of the address via which the
user has left the web page. returned-via returns #f, if the user didn’t leave
the web page via one of the links created with this address (which is not really
possible in this example).

Callbacks

The other method to lead to different successor web pages is using call-
backs. A callback is a function that is called if the user leaves the web
page via an associated link. This is different from the dispatch method
where send-html/suspend returns. You can create a web page that only
uses callbacks to lead to successor web pages and you don’t have to use
send-html/suspend. Instead, you can use send-html.

51

Although it is possible to use several different callbacks in a single web
page, this is not recommended. The reason lies in the implementation of a call-
back, which saves the current continuation. Several different callbacks would
result in the storage of the several slightly different continuations. This is un-
necessary, as you can annotate the callbacks with the arguments for the callback
function. Let’s see an example which is a variation of the previous examples
(important parts / differences emphasized):

(define-structure surflet surflet-interface

(open surflets

surflets/callbacks

scheme-with-scsh)

(begin

(define (main req)

(let ((language (make-annotated-callback result-page)))

(send-html

‘(html

(head (title "Multi-lingual"))

(body

(h2 "Select your language:")

(ul

(li (url ,(language "Hello, how are you?")

"English")

(li (url ,(language "Hallo, wie geht es Ihnen?")

"Deutsch")))))))))

(define (result-page req text)

(send-html/finish

‘(html

(head (title "Greeting"))

(body

(h2 ,text)))))

))

The differences to the dispatch method are the following: you have to open
the surflets/callbacks package to use callbacks, you don’t use the continu-
ation URL to create the callback link, and the callbacked function must accept
the request from the browser as the first argument. Furthermore, you don’t
have to use send-html/suspend, if a user can only leave your web page via
callbacks. However, it can be sensible to combine the dispatch and the callback
method, in which case you have to use send-html/suspend.

Note that is nonsensical to create a callback on top level, i.e.the call to
make-annotated-callback must occur every time main is called and not only
once when the SUrflet is read into memory. For the same reason it is nonsensi-
cal in most cases to reuse a callback.

52

The SUrflet library provides also a wrapper function with which you can
instruct the callback to call different functions instead of a single one. If you
create your callback like

(let ((callback (make-annotated-callback callback-function)))
...)

you can instruct the callback to call different functions like this:

(callback function1 arg1 arg2)
...

(callback function2 arg3 arg4 arg5)

Again, it is your choice which option you want to use. Note that calling
a function with several arguments and of different amount each time is also
possible if you only use a single function for the callback.

6.1.6 Data management

When you write web programs, there are usually two kinds of data that you
use: data that is local to each instance of a SUrflet, e.g.the user’s login, and data
that is global to each instance of a SUrflet, e.g.a port to a logfile. Changes to
local data is only visible to each session of a SUrflet, while changes to global
data is visible to every session of a SUrflet.

The SUrflet library does not really distinguish between these two types of
data, but provides ways to realize both of them in a convenient way that is not
(really) different from the way you handle these data types in a regular Scheme
program.

If a data item is globally used in your SUrflet, define it global (on top level)
and change its values with set!. If a data item is locally used, define it locally
(in your function) and do not change its value with set!.

If the following sounds too technical to you, you can safely skip this para-
graph. The reason why the distinction between global and local data is done
via whether you mutate the data’s value with set! is that the SUrflets are im-
plemented with continuations. Continuations cannot reflect changes that are
done via set! (or side effects in general) and thus such changes are globally
visible. On the other hand continuations represent states of a program and a
reified continuations reifies also the values of all data.

But what to do if you happen to want to change your local data’s value with
set!? The SUrflet library provides a place where you store such mutable local
data and two functions to access it: set-session-data! sets the mutable local

53

data and get-session-data reads the mutable local data. Here is an example.
It uses the callback technique that was presented in the previous section. If
you haven’t read that section, you only need to know that show-page is called
again and again as long as the user keeps on clicking on “Click”.

(define-structure surflet surflet-interface

(open surflets

surflets/callbacks

scheme-with-scsh)

(begin

(define (main req)

(set-session-data! -1)

(let ((start (make-annotated-callback show-page)))

(show-page req ’click start)))

(define (show-page req what callback)

(if (eq? what ’click)

(click callback)

(cancel)))

(define (click callback)

(set-session-data! (+ 1 (get-session-data)))

(send-html

‘(html

(head (title "Click counter"))

(body

(h2 "Click or cancel")

(p "You’ve already clicked "

,(get-session-data)

" times.")

(p (url ,(callback ’click callback) "Click")

(url ,(callback ’cancel callback) "Cancel"))))))

(define (cancel)

(send-html/finish

‘(html

(head (title "Click counter finished"))

(body

(h2 "Finished")

(p "after " ,(get-session-data) " clicks.")))))

))

At the beginning of main we initialize the mutable local data with
set-session-data!.

(define (main req)
(set-session-data! -1)

54

(let ((start (make-annotated-callback show-page)))
(show-page req ’click start)))

Afterwards, we create and save a callback that will be called again and
again. We call show-page with the callback to show the first web page.

(define (show-page req what callback)
(if (eq? what ’click)

(click callback)
(cancel)))

show-page evaluates its second argument what to determine what to do
next: continue or cancel.

(define (click callback)
(set-session-data! (+ 1 (get-session-data)))
(send-html
‘(html
(head (title "Click counter"))
(body
(h2 "Click or cancel")
(p "You’ve already clicked "

,(get-session-data)
" times.")

(p (url ,(callback ’click callback) "Click")
(url ,(callback ’cancel callback) "Cancel"))))))

If the user continues, click increases the mutable local counter and shows
the next page.

Note that we don’t use send-html/suspend here because we use the call-
back to lead to the next web page. If the user clicks on the link labeled with
“Click” or “Cancel”, show-page will be called with ’click or ’cancel, respec-
tively, and the callback as parameters. This creates an endless loop without
saving endless states of the SUrflet.

cancel shows the final page with the amount of clicks performed.

6.1.7 My own SXML

Section 6.1.3 introduced SXML, the way how SUrflets represent HTML. This
section will show you, how you can create your own rules to translate from
SXML to HTML.

55

Terms and theoretical background

This subsection will introduce the main concepts of the translation process and
some necessary terms we will use in the following.

The translation process from SXML to HTML takes two steps. In the first
step, SXML is translated to an intermediate form. This is done by the translator.
In the second step, the intermediate form is printed into an HTML string. This
is done by the printer. The intermediate form looks very much like SXML, but
contains only atoms or, recursively, list of atoms. Atoms are numbers, charac-
ters, strings, #f, and the empty list. We call the intermediate form an atom tree
and the list from which we’ve started an SXML tree.

The basic unit in the translation process is a conversion rule. A conversion
rule consists of a trigger and a conversion function. As its first element, the trig-
ger identifies the list for which the translator shall call the conversion function.
The translator calls the conversion function with all list elements as parameters
and replaces the whole list by the result of the conversion function. The result
of the conversion function is supposed to be an atom tree.

The translator takes the SXML tree and a list of conversion rules as argu-
ments. It then traverses the SXML tree depth first and calls the conversion
functions according to the triggers it encounters, replacing the nodes in the
SXML tree with the return values of each conversion function called. The re-
sult of this translation step will be an atom tree, which the printer will print
into a string or port.

The translator calls the conversion function in two different modes, de-
pending on the conversion rule. The regular mode is the preprocess mode: the
translator translates every argument of the conversion function before calling
it. The other mode is the unprocessed mode: the translator calls the conversion
function directly without preprocessing the arguments. This is, the translator
stops traversing the SXML tree at nodes that trigger a conversion rule in un-
processed mode.

There are two default triggers which you can’t use in your translation rules:
default and *text*. *default* as the trigger marks the default conver-
sion rule which the translator uses if no other conversion rule triggers. *text*
marks the text conversion rule and triggers, if the node in the SXML tree is a
string. In the standard conversion rule set the text conversion rule performs
HTML escaping, e.g.for the ampersand (&).

Outlook

More to come soon about SUrflets consisting of different parts and individual
SXML.

56

6.2 API description

The SUrflet server comes with an extensive set of modules. This section de-
scribes the modules and the programming interfaces. See the howto section
6.1 for a practical guide. Note that most of the procedures mentioned here are
meant to be called from within a SUrflet.

6.2.1 The SUrflet server

The SUrflet server provides basic procedures to send web content to a client.
To enable the SUnet webserver to serve SUrflets, you have to add the SUrflet
handler to it, which resides in the surflet-handler structure. E.g.:

(httpd
(make-httpd-options
...

with-request-handler
(alist-path-dispatcher
(list
(cons "surflet" (surflet-handler (with-surflet-path

"web-server/root/surflets"))))
(rooted-file-or-directory-handler "web-server/root/htdocs"))))

This will set up the SUrflet handler to handle requests directed to the di-
rectory /surflet/. The SUrflet handler can only handle requests directed to
SUrflets. Here’s the interface description:

(surflet-handler options) −→ request-handler procedure

This procedures sets up the SUrflet handler and returns the according
request handler for the SUnet webserver. The options argument is similar
to the one passed to httpd and is exlpained below.

The SUrflet handler accepts requests (solely) to SUrflets whose file name
must have the extension .scm. The structure of SUrflets is explained be-
low. The SUrflet handler receives the request from httpd, translates it
to a surflet-request and passes it to the requested SUrflet. The SUrflet
in turn is expected to return a surflet-response, which the SUrflet han-
dler translates to a repsonse for httpd. Thus, the SUrflet deals only with
surflet-request and surflet-response objects. The structure of these
objects and how they are passed around is explained below.

A SUrflet may also return a redirect response, which the SUrflet han-
dler passes to the httpd untouched. See 2.3 for details.

57

The SUrflet handler calls the SUrflet wrapped into an error handler that
catches any error the SUrflet may yield. In this case, it terminates the
SUrflets session (see below for more on sessions) and returns an error
response to httpd with the error code 500 ”Internal Server Error” and a
description of the error.

The options argument can be constructed in a similar way to the options
argument of httpd. The procedures’ names are of the form with-... and they
all either create a new option or add a new parameter to a given option. The
new parameter is always the first argument while the (old) option the optional
second one. The following procedures reside in the surflet-handler/options
structure.

(with-surflet-path surflet-path [options]) −→ options procedure

This specifies the path in which the SUrflet handler looks for SUrflets.
The surflet-path is a string. This option must be given for the handler to
work.

(with-session-lifetime seconds [options]) −→ options procedure

This specifies the initial lifetime of a session. The lifetime of a session is
the number of seconds the SUrflet handler waits for a response from a
client for that session, before she automatically finishes it. See below for
details on sessions. Defaults to 600, i.e.10 minutes.

(with-cache-surflets? cache-surflets? [options]) −→ options procedure

This specifices whether the SUrflet handler caches SUrflets. The caching
of SUrflets is a prerequisite for SUrflet wide global variables. See below
for details on the scope of variables in SUrflets. Defaults to #t.

(with-make-session-timeout-text timeout-text-procedure [options]) −→ options procedure

This specifies a procedure that generates the timeout text. The SUrflet
handler displays the timeout text when she receives a request for a SUr-
flet session that does not exist, either because the SUrflet finished its ses-
sion, the session has timed out, or the URL is illformed. The default is
an English text with an explanation of the possible reasons and a link to
a new session of the requested SUrflet. timeout-text-procedure accepts the
string path to the SUrflet that was requested and returns a string.

Similar to the httpd options there exists a procedure to avoid parenthisis:

(make-surflet-options transformer value . . .) −→ options procedure

This constructs an options value from an argument list of parameter
transformers and parameter values. The arguments come in pairs, each
an option transformer from the list above, and a value for that parameter.
make-surflet-options returns the resulting options value.

58

For example,

(surflet-handler
(make-surflet-options
with-surflet-path "root/surflets"
with-session-timeout 3600))

defines the SUrflet handler to serve SUrflets from the directory
root/surflets and to timeout unused sessions after one hour.

The SUrflet handler allows runtime read and write access to her options:

(options-surflet-path options) −→ string procedure
(options-session-lifetime options) −→ integer procedure
(options-cache-surflets? options) −→ boolean procedure
(options-make-session-timeout-text options) −→ procedure procedure

These procedures return the stored value for the respective option. See
above for the description of the options.

(set-options-surflet-path! options surflet-path) −→ undefined procedure
(set-options-session-lifetime! options seconds) −→ undefined procedure
(set-options-cache-surflets?! options cache-surflets?) −→ undefined procedure
(set-options-make-session-timeout-text! options timeout-text-procedure) −→ undefined procedure

These procedures change the respective option value. See above for the
description of the arguments. Note that changing the surflet-path within
a SUrflet may result in the SUrflets being unreachable. Turning the cache
off will not empty the SUrflet cache.

6.2.2 SUrflets

Technically, SUrflets are Scheme48 structures, that have the name surflet and
export a main procedure. The file in which their definition reside must have the
extension .scm. The main procedure must accept the initial surflet-request
as an argument. She may or may not return, but if she does, she must return
either a surflet response or a redirect response. For example, this is a
valid SUrflet definition:

(define-structure surflet surflet-interface
(open scheme-with-scsh

surflets)
(begin

(define (main req)
(send-html/finish
’(html (body (p "Hello world!")))))

))

59

surflet-interface is a predefined interface description that exports the
main procedure. It is recommended to use this interface. surflets is a
structure that combines the most commonly used structures to write SUrflets.
send-html/finish is one of the procedures that sends HTML to the client.
More on this below.

As SUrflets are Scheme48 structures, you can use all capabilities of the
Scheme48 module language. See the documentation of Scheme48 for details.

SUrflets should not use the shift-reset structure, as this might confuse
the SUrflet handler. The use of threads within a surflet is currently discour-
aged, as some procedures might not work, especially procedures dealing with
session IDs.

6.2.3 SUrflet management

Upon an initial client request, the SUrflet handler looks for the requested SUr-
flet, loads it dynamically, installs an error handler and calls the main function
of the SUrflet with the initial surflet-request. To minimize the time of load-
ing a SUrflet, the SUrflet handler caches the structure of the SUrflet in a cache,
the SUrflet cache. As the SUrflet is cached, its global values will remain un-
changed even through times when there are no active sessions of the SUrflet.
Changing global SUrflet values is a possibility to exchange data between dif-
ferent sessions of the same SUrflet. Note that you have to take care to serialize
the access to commonly shared, mutated data.

The SUrflet handler allows access to its cache via the following procedures.
The access to these procedures is currently unrestricted but may be restricted
in future versions of the SUrflet server.

(get-loaded-surflets) −→ list procedure

This returns a list of the file names of the loaded SUrflets.

(unload-surflet surflet) −→ undefined procedure

This removes the surflet from the SUrflet cache. The surflet is identified
by its file name, as returned from get-loaded-surflets.

(reset-surflet-cache!) −→ undefined procedure

This empties the SUrflet cache.

Of course, when a SUrflet is removed from the cache, the values in its ses-
sions remain untouched. However, if the SUrflet is newly loaded into the SUr-
flet cache, the SUrflet handler treats it like a new SUrflet, i.e.the sessions of the
”old” and the ”new” SUrflet (though physically the same) do not share their
global data in any way.

60

6.2.4 Surflet Request

SUrflets get their input from surflet-request objects. The rele-
vant procedures are the following. They are all exported by the
surflet-handler/requests alias surflet-requests structure.

(surflet-request? object) −→ boolean procedure
(surflet-request-method surflet-request) −→ string procedure
(surflet-request-input-port surflet-request) −→ input-port/undefined procedure
(surflet-request-uri surflet-request) −→ string procedure
(surflet-request-url surflet-request) −→ url procedure
(surflet-request-version surflet-request) −→ pair procedure
(surflet-request-headers surflet-request) −→ alist procedure

The procedures inspect surflet-request values. Most of
them return the values of the underlying request object from
httpd. surflet-request? is a predicate for surflet requests.
surflet-request-method extracts the method of the HTTP request;
it’s a string and either "GET" or "POST". SUrflets won’t receive re-
quests with other methods. surflet-request-input-port returns
an input-port that contains data from the client on POST requests and
that the SUrflet can safely read. If the request is no POST request, its
value is undefined. surflet-request-uri returns the escaped URI
string as read from the request line. surflet-request-url returns the
respective HTTP URL value (see the description of the url structure
in chapter 4). surflet-request-version returns a (major . minor)
integer pair representing the version specified in the HTTP request.
surflet-request-headers returns an association lists of header field
names and their values, each represented by a list of strings, one for each
line.

For some unknown weird cases, there are also these two procedures:

(surflet-request-socket surflet-request) −→ socket procedure
(surflet-request-request surflet-request) −→ request procedure

surflet-request-socket returns the socket connected to the client. As
with requests, SUrflets should not perform I/O on this socket. See sec-
tion 2.2 for reasoning. surflet-request-requst allows access to the un-
derlying request object from httpd. Both procedures should not be nec-
essary in normal operation and their usage is discouraged.

6.2.5 Surflet Response

SUrflets answer to a request by sending a surflet-response to the SUrflet
handler. The next section deals with how the surflet responses are sent to

61

the SUrflet handler. The relevant procedures for surflet-response are the
following. They are all exported by the surflet-handler/responses alias
surflet-response structure.

(make-surflet-response status content-type headers data) −→ surflet-response procedure

This creates a surflet-response. status is the status code of the response.
See section 2.3 for details on this. content-type is the MIME type of the
data, e.g."text/html". headers is an association list of headers to be added
to the response, each of which consists of a symbol representing the field
name and a string representing the field value. data is the actual data. It
must be either a string or a list of values that will be displayed.

(valid-surflet-response-data? object) −→ boolean procedure

This is a predicate on objects that may be surflet data, i.e.a string or a list
(of objects that will be displayed).

(surflet-response? object) −→ boolean procedure
(surflet-response-status surflet-response) −→ status-code procedure
(surflet-response-content-type surflet-response) −→ string procedure
(surflet-response-headers surflet-response) −→ alist procedure
(surflet-response-data surflet-response) −→ surflet-data procedure

The procedures return surflet-response values. surflet-response? is
a predicate for surflet-responses. surflet-response-status returns
the status code of the response. See section 2.3 for details on the sta-
tus code. surflet-response-content-type returns the MIME type of
the response. surflet-response-headers returns the association list
of header field names and their values, each represented by a list of
strings, one for each line. surflet-response-data returns the data of
the surflet-response, the actual answer of the SUrflet.

6.2.6 Sessions

A session is a set of web pages that logically belong together, e.g.a user surfing
through her webmail. A session starts with the initial request for a SUrflet and
ends either explicitly by the SUrflet, or implicitly after a timeout. A third, not
so common case is its deletion from the session table.

The procedures presented in this subsection are all accessible via the
surflets/sessions structure.

Session management

The SUrflet handler automatically manages the sessions for each SUrflet, thus
the SUrflet does not have to deal with sessions or state control (as it is the case

62

with most other programming interfaces for web applications). In particular,
a SUrflet does not have to take care of saving the contents of variables before
emitting a web page and restoring the values later upon the next request, or
determining how far the user has proceeded in the application. The only thing
a SUrflet may want to do is to tell the SUrflet handler when a session finished
by calling send/finish or an equivalent procedure (see below).

Although a SUrflet does not have to deal with the management of the ses-
sions, the SUrflet handler allows access to its management structures.

(instance-session-id) −→ session-id procedure

This returns the session ID for the current session. The current session is
the session from which the function is called. The SUrflet handler guar-
antees that there won’t be two sessions with the same ID for any given
point in time. However, session IDs may be reused.

(get-session session-id) −→ session procedure

This returns the session for the given session ID.

(get-sessions) −→ alist procedure

This returns the complete list of all active session of the SUrflet handler.
The list is an association list with the session-id as key and the session as
value.

The access to this procedure is currently unrestricted but may be re-
stricted in future versions of the SUrflet server.

(delete-session! session) −→ undefined procedure

This deletes the specified session from the session table. Future requests
to the session are answered with the timeout text.

(session-alive? session) −→ boolean procedure

This returns #t, if the specified session is alive, i.e.requests to it will be
answered by the appropriate SUrflet. Otherwise, she returns #f.

(session-surflet-name session) −→ string procedure
(session-session-id session) −→ session-id procedure

These procedures inspect values of a session. session-surflet-name
returns the name of the SUrflet for which the session was created.
session-session-id returns the session ID of the session.

For each session, the SUrflet handler has a counter running. She resets the
counter each time she receives a request for the session. When the counter
reaches a particular number of seconds, the lifetime of the session, the SUrflet

63

handler deletes the session and removes it from its session table. She will an-
swer all future requests for the session with the timeout text. The following
procedures deal with the lifetime of a session.

(session-lifetime session) −→ integer procedure
(set-session-lifetime! session new-lifetime) −→ undefined procedure

session-lifetime returns the number of seconds the SUrflet han-
dler will initially wait before she automatically finishes the session.
set-session-lifetime! changes the initial lifetime of the session to
new-lifetime and also resets the counter for that session.

(session-adjust-timeout! session [lifetime]) −→ undefined procedure
(adjust-timeout! [lifetime]) −→ undefined procedure

These reset the counter for the lifetime of either the given session
(session-adjust-timeout!) or the current session (adjust-timeout!).
Both procedures give the session a lifetime of either lifetime seconds or of
the lifetime seconds stored for the according session.

In order to allow easy web programming, the SUrflet handler automati-
cally saves and reifies continuations of a session. This is totally transparent to
the web programmer. For adminstration purposes, the SUrflet handler offers
access to the continuation table of a session via the following procedures.

(session-continuation-table session) −→ table procedure
(session-continuation-table-lock session) −→ lock procedure
(session-continuation-counter session) −→ thread-safe-counter procedure

These functions return the continuation table, the lock for the continua-
tion table and the counter for the continuations, respectively. The con-
tinuation table is a hash table with the continuation ID as key and the
continuation as value, based on the tables structure of Scheme48. The
lock is based on the locks structure of Scheme48. The thread-safe-counter is
based on the thread-safe-counter structure that is part of the SUrflets.

The access to these functions is currently unrestricted but may be re-
stricted in future versions of the SUrflet server.

The surflets/continuations structure also offers procedures to access the
continuations.

(get-continuations session) −→ list procedure

Returns a list of all continuations of the session. The list elements are pairs
with the car being the session and the cdr being the continuation.

(delete-continuation! session-continuation) −→ undefined procedure

64

Removes the specified continuation from the continuation table.
session-continuation is a pair as returned from get-continuations. It is
no error if the session or the continuation does not exist anymore.

The access to this functions is currently unrestricted but may be restricted
in future versions of the SUrflet server.

(continuation-id session-continuation) −→ number procedure

Returns the continuation ID of the continuation specified by
session-continuation which is a pair as returned by get-continuations.

The surflets/ids structure provides procedures to determine the ses-
sion and continuation IDs of the current session. See also the entry for
resume-url-ids somewhere else in this document.

(my-session-id surlfet-request) −→ number procedure
(my-continuation-id surlfet-request) −→ number procedure
(my-ids surlfet-request) −→ number number procedure

These return the session and continuation ID that where used to access
the current session. The procedures work for every surflet-request except
for the inital one that main gets. The values returned by my-ids are the
session and the continuation ID in this order.

(surflet-file-name surlfet-request) −→ string procedure

This returns the name of the SUrflet of the current session.

Session data

The SUrflet handler distinguishes three kinds of session data: session data that
is local to a session of a SUrflet and not mutated, session data that is local to a
session of a SUrflet and mutated and session data that is global to all sessions
of a SUrflet. Every variable value that is never mutated is automatically local
to the session of the SUrflet. Variable values that are mutated are automatically
global to all sessions of the SUrflet. Values that have to be mutated but should
be local to a session of the SUrflet must be stored in a special place, the session
data field of the SUrflet handler.4

(get-session-data) −→ object procedure
(set-session-data! new-value) −→ undefined procedure

4The reason for this distinction is the fact that the SUrflet handler saves and reifies the continu-
ation of a SUrflet to realize the easy programming of web applications. Mutations of values remain
visible after reifying the continuation.

65

These procedures allow read/write access to the session data field of the
SUrflet handler. The SUrflet handler installs a session data field for each
session she creates. get-session-data reads the contents of this field,
which is initially #f. set-session-data! sets the contents of the field to
new-value. Mutations to the values, no matter when they occur, are local
to the session from which the procedures are called, i.e.the changes are
only visible within a particular session of the SUrflet. The procedures are
exported by the surflet-handler/session-data structure.

6.2.7 Basic I/O

The SUrflet communicates with the web client basically with the following
send primitives. They are exported by the surflet-handler/primitives
structure along with the procedures from surflet-handler/requests,
surflet-handler/responses and the status-code syntax.

(send surflet-response) −→ no return value procedure

This procedure sends the data of the surflet-response to the client and does
not return.

(send/finish surflet-response) −→ no return value procedure

This procedure does the same as send, but it also finishes the session
of the SUrflet. Future requests to the SUrflet will be answered with the
timeout text (see above).

(send/suspend surflet-response-maker) −→ surflet-request procedure

This procedure suspends the current computation of the SUrflet and
calls surflet-response-maker with the continuation-URL of the current ses-
sion to create the actual surflet-response. When a client requests
the continuation-URL, the computation of the SUrflet will resume with
send/suspend returning that request of the client. See 6.2.9 for details on
continuation-URLs.

(send-error status-code surflet-request [messages]) −→ no return value procedure

This sends an error response to the client. status-code is the status
code of the error, see section 2.3 for details. surflet-request is the last
surflet-request the SUrflet received; if unknown this argument may
be #f. messages may contain some further information about the cause of
the error.

66

6.2.8 Web I/O

Most of the time, a SUrflet won’t send arbitrary data but HTML to the client.
For this purpose, the SUrflets provide extensive support. First of all, they pro-
vide procedures specially designed for submitting HTML.

(send-html sxml) −→ no return value procedure
(send-html/finish sxml) −→ no return value procedure
(send-html/suspend sxml-maker) −→ surflet-request procedure

These are the equivalent procedures to the send primitives. send-html
and send-html/finish accept an SXML object (more on that below),
translate it into HTML and send it to the client, the latter finishing the
session. send-html/suspend suspends the current computation, calls
sxml-maker with the continuation-URL, translates the resulting SXML
into HTML and sends it to the client. When the client requests the
continuation-URL, the computation is resumed and send-html/suspend
returns with the surflet-request.

SXML

For easy creation of HTML output, the send-html procedures mentioned
above represent the HTML in SXML. SXML is a creation of Oleg Kiselyov. Ba-
sically, SXML is a list whose car is an SXML tag, a symbol representing the
HTML tag, and the cdr are other SXML elements that will be enclosed by the
HTML tag. For example,

’(h2 "Result")

represents the tag h2, that encloses the text ”Result”. The represented HTML is

<h2>Result</h2>.

As in HTML, elements may be nested:

’(body (h2 "Result") (p "Example"))

represents

<body><h2>Result</h2><p>Example</p>.

The @ symbol marks HTML attributes. The attributes follow the @ symbol
in two element lists, the first element being the name of the attribute and the
last its value. For example, this is a link:

’(a (@ (href "add-surflet.scm") (name "linklist")) "Make new
calculation.")

representing the following HTML

67

Make new
calculation..

The attributes form will only be recognized as such if it is the second element
of a list, right after the SXML tag.

(sxml-attribute? object) −→ boolean procedure
(sxml-attribute-attributes sxml-attribute) −→ list procedure

These are procedures on SXML attribute forms. sxml-attribute? is a
predicate for SXML attribute forms. It checks if object is a list whose first
element is the symbol @. sxml-attribute-attributes returns the list of
name-value-lists of the attributes form. Both procedures are exported by
the surflets/sxml structure.

The translator translates list elements which are numbers and symbols to
their string representation (except for the first element, of course). She scans
strings for the special characters &, ", > and < and replaces them by their HTML
equivalents, and she ignores #f and the emtpy list. See below the special SXML
tag plain-html to see how to insert HTML code untranslated. Furthermore,
the translator accepts input-fields as list elements, which are translated to
their HTML representation. See below for details on input fields.

Using lists to represent HTML allows the programmer to define opera-
tions on it. Most programmers construct their lists dynamically, often by using
quasiquote (the symbol ‘) and unquote (the symbol ,). E.g.

‘(html (title ,my-title)
(body (p "Hello, " ,(get-user-full-name))))

See below for how to create your own SXML.

Special SXML tags

The SXML to HTML translator accepts some special SXML tags that don’t di-
rectly translate to an HTML tag.

(url URL [text]) SXML-tag

Inserts a link to URL, named with text. text defaults to URL. Takes at least
one argument. E.g.

(url "/" "Main menu") =⇒ Main menu
(url "go.html") =⇒ go.html

Oops: url does not accept extra attributes for the ‘A’ tag of HTML.
This should be fixed in a future version.

68

(nbsp) SXML-tag

Inserts the HTML sequence " ". Takes no arguments.

(plain-html html . . .) SXML-tag

Inserts html without any changes, thus it works like a quote. Takes any
number of arguments.

(*COMMENT* comment . . .) SXML-tag

Inserts a comment, i.e.comment enclosed between <!-- and -->. Takes
any number of arguments.

(surflet-form k-url [method] [attributes] [SXML . . .]) SXML-tag

Inserts HTML code for a web form. See below for details. k-url usu-
ally is a continuation-URL. method is the method to be used by the client
to transfer the webform data. Possible values are the symbols GET, get,
POST, post, the first two specifying the GET method, the last two the
POST method. method defaults to the GET method. attributes are
attributes for the created web form, e.g.(@ (enc-type "text/plain")).
The remaining arguments are taken as SXML and translated as usually.
Takes at least one argument. Note that the attributes form may come at
position three.

Do it yourself: your own SXML

The send-html procedures use a standard set of translation rules to translate
from SXML to HTML. However, you may define your own set of translation
rules or extend the given ones as you see fit. For this, a short introduction to
the translation process.

The translation process takes place in two steps. Step one translates the
given SXML to low level SXML, essentially a rough form of HTML in list no-
tation. Step two takes this low level SXML and prints it to a port. Step one is
performed by sxml->low-level-sxml, step two by display-low-level-sxml.
All procedures and rules presented in this subsection are exported from
surflets/sxml.

(sxml->low-level-sxml sxml rules) −→ low-level-sxml procedure

Takes an SXML object (which is essentially a list) and a list of SXML rules
(more on this below) and translates it to low level SXML. This procedure
is an alias to the pre-post-order procedure of Oleg Kiselyov’s SSAX
module. It is an error if no rule triggers (see below for when a rule trig-
gers). However, it is no error if multiple rules trigger; the first rule in the
rules list wins.

69

(display-low-level-sxml low-level-sxml port) −→ boolean procedure

Takes low level SXML and displays it to a port. She traverses the list
low-level-sxml depth-first, ignores the empty list and #f, executes thunks
and displays all other elements, usually strings and characters, to port.
Returns #t if she wrote anything, #f otherwise. This function is basically
the SRV:send-reply procedure of Oleg Kiselyov’s SSAX module.

(sxml->string sxml rules) −→ string procedure

Combines step one and two of the translation process and returns the
resulting string, i.e.it calls display-low-level-sxml with the result of a
call to sxml->low-level-sxml and a string port, returning the content of
the string port.

An SXML-rule consists of a trigger, which is a symbol, and the handler,
which is a translation procedure.

There are three types of rules, each of which is a dotted list:

(〈 trigger 〉 *preorder* . 〈handler 〉)
When sxml->low-level-sxml sees the 〈 trigger 〉 as the first element of a
list, she calls 〈handler 〉 with the whole list as arguments and replaces the
list with the result of that call (which must be a single value). Note that
the arity of the handler determines how many elements the list with the
trigger may or must contain.

(〈 trigger 〉 . 〈handler 〉)
When sxml->low-level-sxml sees the 〈 trigger 〉 as the first element of a
list, she calls herself on the remaining elements of the list and then calls
the 〈handler 〉 with the trigger and the results of those calls as arguments.

(〈 trigger 〉 〈new-rules 〉 . 〈handler 〉)
When sxml->low-level-sxml sees the 〈 trigger 〉 as the first element of a
list, she temporarily prepends 〈new-rules 〉 to the current rule set while
calling herself on the remaining elements of the list. She then calls the
〈handler 〉 with the trigger and the results of those calls as arguments. As
the new rules are prepended, this rule allows the temporary override of
some rules.

There are two special triggers, who may trigger for all elements of the
SXML, not only the first element of a list:

• *text* triggers for atoms in the SXML list, i.e.usually strings and char-
acters. The handler is called with the symbol *text* and the atom as
arguments.

70

• *default* triggers whenever no rule triggered, including *text*. If
called for a list whose first element did not trigger a rule, the handler
is called with the whole list. If called for an atom, the handler is called
with the symbol *text* and the atom as arguments.

The surflets/sxml structure defines some basic rules:

default-rule SXML-rule
text-rule SXML-rule
attribute-rule SXML-rule

These are the three basic rules exported by the surflets/sxml structure.
default-rule creates the leading and trailing HTML tag and encloses the
attributes. text-rule just inserts the given text with the special HTML
characters &, ", > and < escaped. attribute-rule triggers for the at-
tributes form and creates attributes like selected or color="red".

The surflets/surflet-sxml add the rules for the special SXML tags to this
list:

url-rule SXML-rule
nbsp-rule SXML-rule
plain-html-rule SXML-rule
comment-rule SXML-rule
surflet-form-rule SXML-rule

These are the rules for the special SXML tags mentioned above, namely
url, nbsp, plain-html, *COMMENT* and surflet-form.

default-rules list
surflet-sxml-rules list

These are rule sets. default-rule contains the rulese
default-rule, attribute-rule, text-rule, comment-rule, url-rule,
plain-html-rule and nbsp-rule. surflet-sxml-rules extends this list
by surflet-form-rule and a rule for input fields.

(surflet-sxml->low-level-sxml sxml) −→ low-level-sxml procedure

This uses the surflet-sxml-rules to translate sxml to low level SXML,
performin step one of the translation process.

6.2.9 Continuation-URL

The continuation-URL represents the point in the computation of a session of
a SUrflet where the computation was halted by the SUrflet handler. When a

71

browser requests a continuation-URL, the SUrflet handler looks up the contin-
uation in its tables and reifies it, allowing the session of the SUrflet to resume
its computation.

The procedures to access the continuation-URL are the following. They are
exported by the surflet-handler/resume-url structure. Sorry for the double
naming resume-url and continuation-URL.

(resume-url? string) −→ boolean procedure
(resume-url-ids resume-url) −→ session-id continuation-id procedure
(resume-url-session-id resume-url) −→ session-id procedure
(resume-url-continuation-id resume-url) −→ continuation-id procedure

These inspect values of a resume url. resume-url? is a predicate
for resume urls (the same as continuation urls). Note that it only
operates on strings. resume-url-ids returns the session- and the
continuation-id that is stored in the resume-url. resume-url-session-id
and resume-url-continuation-id return only the session- or the
continuation-id, respectively.

6.2.10 Input fields

The SUrflets support all input fields defined for HTML 2.0 and allow the cre-
ation of own input fields. input-fields are first order values, that represent
the actual input field of the web page in the SUrflet. For that, this documenta-
tion distinguishes the browser value from the Scheme value of an input field. The
browser value is the string representation of the input field data the browser
sends. The Scheme value is the value in the SUrflet the input field reports as
its value, which may be of any type, not only strings.

Here is a short overview on how to use input fields. See also the howto for
more informations. First, you create the input-field that represents the input
field you want to use. Then you put this input-field into the SXML of the
web page at the place the input field shall appear. After send-html/suspend
has returned with the next surflet-request, you call get-bindings with
that surlfet-request and collect the resulting bindings. Last, you call
input-field-value (or raw-input-field-value) with your input-field and
the collected bindings to get the Scheme representation of the value the user
has entered. Here is a small example:

(define-structure surflets surflet-interface
(open scheme-with-scsh

surflets)
(begin

(define (main req)

72

(let* ((text-input (make-text-field))
(req (send-html/suspend

(lambda (k-url)
‘(html
(body
(surflet-form
,k-url
(p "Enter some asd text: " ,text-input)
,(make-submit-button)))))))

(bindings (get-bindings req))
(text (input-field-value text-input bindings)))

(send-html/finish
‘(html
(body
(p "You’ve entered ‘" ,text "’."))))))

))

Getting the bindings The surflets/bindings structures exports the neces-
sary functions to create bindings and extract values from them:

(get-bindings surflet-request) −→ bindings procedure

This returns an association list representing the data the browser
has sent, usually the content of a webform. The name of the in-
put fields are the keys, their browser values the values. The val-
ues are already unescaped. get-bindings can (currently) only handle
application/x-www-form-urlencoded data. You can call get-bindings
on both GET and POST requests, even multiple times (even on POST re-
quests).

(extract-bindings key bindings) −→ list procedure
(extract-single-binding key bindings) −→ string procedure

These extract values from the bindings as returned by get-bindings. key
may be a string or a symbol which will be translated to a string before use.
extract-bindings returns a list of all values from bindings whose key is
key. extract-single-binding returns the value from the binding whose
key is key and raises an error if there is more than one such binding. The
two procedures are the same as in PLT’s webserver.

get-bindings must acces the ”Content-length” header field to handle POST
requests. surflets/bindings also exports the procedure that does that job:

(get-content-length headers) −→ number procedure

73

Returns the value of the ”Content-length” header as a number, as present
in headers, e.g.from surflet-request-headers. Will raise an error if there
is no ”Content-length” header or the header is illformed, e.g.contains no
number.

Retrieving the Scheme values The surflets/input-field-value structure
provides the functions necessary to retrieve the Scheme value of input fields.

(raw-input-field-value input-field bindings) −→ any type procedure
(input-field-value input-field bindings [error-value]) −→ any type procedure

These extract the Scheme value of an input-field, given the bindings of
the last request. Asking for a Scheme value may raise an error. Some
error conditions are: the input field was not present in the bindings,
the transformer could not generate a Scheme value for the browser
value, or some other error occured in a maybe malfunctioning trans-
former. In any case, raw-input-field-value won’t catch that error,
while input-field-value will catch it and provide error-value as the
input-field’s Scheme value, which defaults to #f.

(input-field-binding input-field bindings) −→ binding procedure

This returns the first binding in bindings that belongs to the given
input-field (i.e.has input-field’s name as key).

Creating and using input fields The procedures for the creation of the in-
put fields mentioned in HTML 2.0 are the following. They are exported by
the surflets/surflet-input-fields. Note that most of the time, you may
omit any of the optional arguments, e.g.you may only specify some further at-
tributes to make-text-field without specifying a default value. Keep in mind
that input-field-value catches the error that may occur if an input-field
is asked for its Scheme value and may return any (previously chosen) value
instead.

(make-text-field [default] [attributes]) −→ input-field procedure
(make-number-field [value] [attributes]) −→ input-field procedure
(make-password-field [default] [attributes]) −→ input-field procedure
(make-textarea [default] [rows] [columns] [readonly?] [attributes]) −→ input-field procedure

These create various input field where the user types something in.
default is the text or the number that the browser initially displays in the
input field. attributes are some further attributes for the input field in
SXML notation. make-text-field creates a regular text input field. Its
Scheme value is a string. make-number-field creates a regular text input
field, whose Scheme value is a number. It is an error if the input field

74

does not contain a number. make-password-field creates a text input
field that will display stars instead of the typed text. Its Scheme value
is a string. make-textarea creates a possibly multi line text input field.
rows specifies how many rows of the text the browser will display at once
and defaults to 5. columns specifies how many columns the browser will
display at once and defaults to 20. Note that if you only supply one num-
ber, it will be interpreted as the rows argument. readonly? is a boolean that
tells the browser whether to disallow changes of the displayed text.

(make-hidden-input-field [default] [attributes]) −→ input-field procedure

Creates a hidden input field, i.e.a input field that the browser won’t dis-
play but whose value the browser will send. This input field is provided
for completeness; you usually won’t need it, as all values in your SUrflet
will survive the emission of a web page. default is this value the browser
will send. Note that although the argument is marked as optional you
usually want to provide it. attributes are some further attributes for the
input field in SXML notation.

(set-text-field-value! input-field) −→ undefined procedure
(set-number-field-value! input-field) −→ undefined procedure
(set-hidden-field-value! input-field) −→ undefined procedure
(set-password-field-value! input-field) −→ undefined procedure
(set-textarea-value! input-field) −→ undefined procedure

These set the default value of the according input field after it has been
created. Although the procedure may not complain, it is an error, if
input-field is not the expected type of input-field, e.g.if the argument
to set-text-field-value was not created by make-text-field.

(make-submit-button [caption] [attributes]) −→ input-field procedure
(make-reset-button [caption] [attributes]) −→ input-field procedure
(make-image-button image-source [attributes]) −→ input-field procedure

These create buttons on the web page which the user can click on. caption
is the text that is displayed on the button. If not specified, the browser
will choose a text, usually depending on the local language setting on
the browser side. attributes are some further attributes for the input
field in SXML notation. make-submit-button creates the regular but-
ton to submit the web form data. As HTML 2.0 specifies that the value
of a submit button is its caption, its Scheme value is its caption, too.
make-reset-button creates the button to reset all input fields of the web
form to their default values. As the browser does not send data for reset
buttons, it does not have a Scheme value, i.e.asking for a value will raise
an error. make-image-button creates a picture button. Its Scheme value
is a pair indicating the x- and y-coordinates of the picture where the user

75

has clicked to. The argument image-source is not optional and is the string
URL of the displayed picture.

(make-checkbox [checked?] [attributes]) −→ input-field procedure
(make-annotated-checkbox value [checked?] [attributes]) −→ input-field procedure

These create checkboxes. checked? says whether the browser should ini-
tially mark the checkbox as checked. attributes are some further attributes
for the input field in SXML notation. If it was checked the Scheme
value of a checkbox made by make-checkbox is #t. If it was checked,
the Scheme value of a checkbox made by make-annotated-checkbox is
its value provided during its creation where value may be chosen arbi-
trarily. Note that HTML 2.0 specifies that browsers should not send
data for unmarked checkboxes, thus asking for the Scheme value of
an unmarked checkbox will raise an error. It is recommended to use
input-field-value to ask for the Scheme value of a checkbox. This will
catch the error and will instead return #fby default.

(check-checkbox! input-field) −→ undefined procedure
(uncheck-checkbox! input-field) −→ undefined procedure
(set-checkbox-checked?! input-field checked?) −→ undefined procedure

These change the checked? field of a checkbox that tells the
browser whether it should initially mark the checkbox as checked.
check-checkbox! tells the browser to do so, uncheck-checkbox! does
not tell the browser to do so, and set-checkbox-checked?! does so
depending on checked?. It is an error if input-field was not created by
make-checkbox or make-annotated-checkbox.

(make-radio-group) −→ procedure procedure
(make-annotated-radio-group) −→ procedure procedure

These return generators for radio buttons. Radio buttons usually are
part of a group of radio buttons of which only one may be selected at
any time. The procedures return a procedure that creates radio button
input-fields that belong to the same group.

The returned procedures accept a value argument, an optional checked?
argument and an optional attributes argument. They return an
input-field, the actual radio button. For make-radio-group, value must
be a string, for make-annotated-radio-group, value may be any Scheme
value. The Scheme value of any member of the group of radio buttons
is the value of the marked radio button that was provided during its cre-
ation. checked? determines whether the browser will initially mark the
radio button. Note that you are able to tell the browser to initially mark
more than one radio button, but in which case the browser’s behavior

76

is undefined. attributes are some further attributes for the input field in
SXML notation.

(check-radio! input-field) −→ undefined procedure
(uncheck-radio! input-field) −→ undefined procedure
(set-radio-checked?! input-field checked?) −→ undefined procedure

These change the checked? field of a radio button that tells the
browser whether it should initially mark the radio button as checked.
check-radio! tells the browser to do so, uncheck-radio! does not tell
the browser to do so, and set-radio-checked?! does so depending on
checked?. It is an error if input-field was not created by the procedures
returned by make-radio-group or make-annotated-radio-group.

(make-select select-options [multiple?] [attributes]) −→ input-field procedure

This creates a select boxes. Other names are “drop down menu” or sim-
ply “list”. select-options is either a list of select-options created with
the procedures presented below or a list of strings. In the latter case the
strings are automatically translated into select-options. multiple? al-
lows multiple selections in the select box. attributes are some further at-
tributes for the input field in SXML notation. Note that you will only get
multiple Scheme values for a select box that allows multiple selections, if
you specify the multiple? argument; providing the according attribute in
attributes won’t work (you will get the value of the first selection only).

(make-simple-select-option tag [selected?] [attributes]) −→ select-option procedure
(make-annotated-select-option tag value [selected?] [attributes]) −→ select-option procedure

These create the options for a select box, to be used as arguments to
make-select. tag is a string that will be displayed as an option of a select
box. value is an arbitrary Scheme value that will be the Scheme value of
the select input field that contains the option. For simple select options
this is the same as tag. selected? determines whether the browser should
preselect the option. attributes are some further attributes for the input
field in SXML notation.

(select-option? object) −→ boolean procedure

This is a predicate for select-options.

(select-select-option! tag input-field) −→ undefined procedure
(unselect-select-option! tag input-field) −→ undefined procedure
(set-select-option-selected?! tag input-field selected?) −→ undefined procedure

77

These change the selected? field of a select option that tells the
browser to preselect it. select-select-option! tells the browser to
preselect it, unselect-select-option! does not tell it to do so and
set-select-option-selected! does so depending on selected?. Note
that you access the select option by providing the tag and the select
input-field in which the select option is saved. tag is either the tag of the
select option or an index with 0 being the first select option of that select
input field. However, the change will affect all select input fields that use
the same select option. If there are different select options with the same
tag in a select input field, the procedures will only touch one of them.

Oops: Unfortunetaly, the order of the arguments (index, object) is the
opposite of what is usual in Scheme (object, index). This should be
fixed in a future version.

(add-select-option! input-field select-option) −→ undefined procedure
(delete-select-option! input-field select-option) −→ undefined procedure

These add or remove select-option to or from the select input-field, respec-
tively.

Do it yourself: your own input fields

The SUrflets library allows the creation of arbitrary own input fields. The rele-
vant procedures are exported by the surflets/my-input-fields structure.

(make-input-field name type transformer attributes html-tree-maker) −→ input-field procedure
(make-multi-input-field name type transformer attributes html-tree-maker) −→ input-field procedure

These are the two constructors for input-fields.

name is the name of the input field as used in the HTML. You have to
make sure that this name is unique across your web page, e.g.by using
generate-input-field-name presented below.

type is the type of the input field and mainly meant as a label for debug-
ging. You may choose an arbitrary value for it.

transformer is a procedure that accepts the created input-field and some
other value as arguments and returns the (single) Scheme value of the
input field. For make-input-field, the other value is the string repre-
sentation of the value the user has entered in the represented input field,
as sent by the browser. For make-multi-input-field, the other value is
an association list of all data the browser has sent, the names being the
key and the entered data being the value. This is the very same list as re-
turned by get-bindings, see above. When the transformer cannot create
a Scheme value for the input-field, she should raise an error.

78

attributes takes some extra information you want to store along with the
input-field. You may choose an arbitrary value for it.

html-tree-maker is a procedure that takes the created input-field as ar-
gument and returns its representation in SXML.

(generate-input-field-name prefix) −→ string procedure

This generates a pseudo unique name based on prefix. Subsequent calls
with the same prefix are guaranteed to never return the same string.5

(input-field-name input-field) −→ string procedure
(input-field-type input-field) −→ any type procedure
(input-field-transformer input-field) −→ procedure procedure
(input-field-attributes input-field) −→ any type procedure
(input-field-html-tree-maker input-field) −→ procedure procedure
(input-field-html-tree input-field) −→ sxml procedure
(input-field-multi? input-field) −→ boolean procedure

These inspect input field values. input-field-name returns the name of
the input field as used in its HTML representation. input-field-type
returns a string indicating the type of the input field, e.g.”radio” or
”text”. For individual input fields it may return a value of any type.
input-field-transformer returns the transformer procedure that is
used the transform the browser value of the input field to a Scheme
value. input-field-attributes returns the attributes that were stored
along with the input field. input-field-html-tree-maker returns
the procedure that creates the SXML representation of the input field.
input-field-html-tree returns the SXML representation of the input
field. input-field-multi? returns #tif the input field was created with
make-multi-input-field, #fotherwise. The transformer of an multi-
input-field gets the browser bindings as second argument while the
transformer of a normal (non-multi) input-field gets the string repre-
sentation of the entered data as second argument.

(set-input-field-attributes! input-field new-attributes) −→ undefined procedure

This allows the mutation of the attributes of the input-field to
new-attributes.

(touch-input-field! input-field) −→ undefined procedure

This forces the recalculation of the SXML representation of the input-field
using its html-tree-maker procedure.

5Well, never say never: if the structure is reloaded, the counter is reset and
generate-input-field-name will return the same names again.

79

6.2.11 Web addresses

The SUrflets library allow you to determine which link or button a user
used to leave a page. The links are called evaluatable web addresses. The
surflets/returned-via structure provides procedures and syntax for this.

(returned-via return-object bindings) −→ any value procedure
(returned-via? return-object bindings) −→ any value procedure

Determines, whether the user left the web page using return-object.
bindings are the bindings as returned by get-bindings. If return-object
is an input-field, returned-via returns its Scheme value as reported
by input-field-value. The input field usually can only be a submit or
an image button. If return-object is not an input-field, returned-via as-
sumes it is an evaluatable web address. If the user did not use the evalu-
atable web address to leave the web page, returned-via returns #f. Oth-
erwise, when the evaluatable web address is annotated, returned-via
returns its annotation, otherwise just #t. returned-via? is an alias for
returned-via. The type of the return value depends on the type of
return-object.

(case-returned-via 〈key 〉 〈clause 〉 ...) syntax

This works like case with some flavor of cond. Instead of eq? it
uses returned-via to determine which 〈clause 〉 applies. 〈key 〉 is the
bindings argument to returned-via (see above for the arguments of
returned-via).

A clause is of the form

((〈datum 〉 ...) 〈 expression 〉 ...)

where each 〈datum 〉 is the return-object argument of returned-via. If for
any of the 〈datum 〉 returned-via returns a true value, the 〈 expression 〉s
are evaluated.

Alternatively, a clause may be of the form

((〈datum 〉 ...) => 〈procedure 〉 ...)

If for any of the 〈datum 〉 returned-via returns a true value, 〈proc 〉 is
called with that value.

The last possible clause is an ”else” clause of the form

(else 〈 expression 〉 ...)

which applies when the previous clauses don’t apply.

case-returned-via returns the value(s) of the 〈 expression 〉 that was eval-
uated last.

80

Evaluatable web addresses

The surflets/addresses structure provides procedures to create evaluatable
web addresses. Evaluatable web addresses are used just like web addresses
with the difference that returned-via can tell whether the user used this web
address to leave the web page.

(make-address) −→ address-procedure procedure

This creates an evaluatable web address. address-procedure is a procedure
that accepts messages. If the message is a string, address-procedure will
assume it is a continuation URL and will return a web address that can
be used as a link. If the message is the symbol address, address-procedure
will return the real address object.

(make-annotated-address) −→ address-procedure procedure

This creates an annotated evaluatable wewb address. address-procedure is
a procedure that accepts messages. The procedure accepts either a string
and an optional annotation which may be any Scheme value, or it accepts
only the symbol address. In the first case, it will assume the string is a
continuation URL and will return a web address that can be used as a
link. In the latter case, it will return the real address object.

Oops: Evaluatable web address cannot be used as the action URL of web
forms.

(address-name address) −→ string procedure
(address-annotated? address) −→ boolean procedure
(address-annotation address) −→ any type procedure

These inspect real address objects as returned by the evaluatable web
addresses when given the symbol address. address-name returns the
name of the address as used in the browser data. address-annotated?
indicates whether address is annotated. address-annotation returns the
annotation of address. If address is not annotated, it returns #f.

6.2.12 Callbacks

The SUrflets library allows to add a callback to a link. When the user of a
web page clicks on the link, the callback will be executed. send-html/suspend
(usually) won’t return in that case.

(make-callback callback-procedure) −→ continuation-URL procedure

81

This creates a callback. When a user clicks on a link to the continuation
URL make-callback has returned, callback-procedure will be called with
the according surflet-request. callback-procedure should not return.

make-callback works with continuations. Therefore, it is not sensible to
create callbacks on toplevel, nor is it sensible to reuse callbacks. Instead,
create your callback every time and right before you need it.

If callback-procedure returns, make-callback will return again, this time
with the value returned by callback-procedure. Note that in this case the
continuation that was active at the time of the call to make-callback is
restored. Or, in short, don’t let callback-procedure return if you want to
avoid headaches.

(make-annotated-callback callback-procedure) −→ procedure procedure

This creates a callback generator. The returned procedure accepts any
number of arguments args and returns a continuation URL. When the
user clicks on a link to the continuation URL, callback-procedure will be
called with the arguments args previously provided.

It is an error, if callback-procedure returns. You should create a fresh anno-
tated callback every time and right before you need it, as the continuation
that was active at the time of the call to make-annotated-callback is re-
stored.

callback-function procedure

Use this procedure as the callback-procedure argument to
make-annotated-callback to call arbitrary procedures with arbitrary
arguments.

Here are some examples. The first example shows how you can use an
annotated callback. Note that it does not need to use send-html/suspend.

(define-structure surflet surflet-interface
(open surflets

surflets/callbacks
scheme-with-scsh)

(begin

(define (main req)
(let ((language (make-annotated-callback result-page)))
(send-html
‘(html
(head (title "Multi-lingual"))
(body

82

(h2 "Select your language:")
(ul
(li (url ,(language "Hello, how are you?")

"English")
(li (url ,(language "Hallo, wie geht es Ihnen?")

"Deutsch")))))))))

(define (result-page req text)
(send-html/finish
‘(html
(head (title "Greeting"))
(body
(h2 ,text)))))

))

Replacing the main procedure with the following definition will have the
same result:

(define (main req)
(let ((language (make-annotated-callback callback-function)))
(send-html
‘(html
(head (title "Multi-lingual"))
(body
(h2 "Select your language:")
(ul
(li (url ,(language result-page "Hello, how are you?")

"English")
(li (url ,(language result-page "Hallo, wie geht es Ihnen?")

"Deutsch")))))))))

6.2.13 Outdater

The SUrflets library allows the user to navigate through the web pages back
and forth as she sees fit. However, sometimes you want to make sure, that a
submission is done only once. For this, the SUrflets provide outdater objects
that take care of this.

(make-outdater) −→ outdater procedure

Creates an outdater object.

(if-outdated 〈outdater 〉 〈consequence 〉 〈alternative 〉) syntax

83

Using the 〈outdater 〉, this makes sure, the 〈alternative 〉 is executed at
most once, i.e.the first time the 〈outdater 〉 is used in such a form,
the 〈alternative 〉 is evaluated. Every subsequent evaluation of the
if-outdated form with the 〈outdater 〉 will evaluate the 〈consequence 〉,
usually something similar to what show-outdated does.

(show-outdated url) −→ no return value procedure

Emits a regular web page to the client informing the user (in English)
that “the page or action you requested relies on outdated data”. It offers
a “reload” link that points to url to get current data. Usually, url is a call-
back URL the calls the according procedure. See the admin SUrflets for
examples, e.g.scheme/web-server/root/surlfets/admin-surflet.scm.

6.2.14 Simple SUrflets

PLT offers an API to create simple servlets (which are their analogues to
our SUrflets). The simple-surflet-api structure offers the procedures with
the same name as in the PLT API. With that, SUrflets can look as sim-
ple as this (scheme/web-server/root/surlfets/add-simple.scm, see also
simple-surflet.scm in the same directory for a larger example:

(define-structure surflet surflet-interface
(open scheme-with-scsh

surflets
simple-surflet-api
)

(begin

(define (main req)
(let* ((number-1 (single-query (make-number "First number:")))

(number-2 (single-query (make-number "Second number:"))))
(inform (format #f "~a + ~a = ~a"

number-1
number-2
(+ number-1 number-2))))

(final-page "Session finished."))

))

The procedures are the following.

(single-query query) −→ any type procedure

Asks the user one single questions based on query and returns her answer.

84

(queries queries) −→ list procedure

Asks the user multiple questions based on the list of queries and returns
her answers in a list.

(form-query named-queries) −→ list procedure

Asks the user multiple queries based on the list of named-queries and re-
turns her answers in a pseudo association list. named-queries is a list of
two element lists. The first element of those lists is a symbol identifying
the query, the second is the query. The resulting pseudo association list
contains two element lists, where the first element is the symbol and the
second element the user’s answer to the query. The result can be read
using the extract/single and extract procedures.

(inform title [text . . .]) −→ surflet-request procedure

Sends a web page title title with the text to the user as an information.
The returned surflet-request is usually discarded. Takes at least one
argument.

(final-page title [text . . .]) −→ no return value procedure

This sends the last page of the session to the user, titled title and contain-
ing text. This is the analog to send/finish. Takes at least one argument.

(make-text invitation) −→ query procedure

(make-number invitation) −→ query procedure

(make-password text) −→ query procedure

(make-boolean invitation) −→ query procedure

(make-radio invitation choices) −→ query procedure

(make-yes-no invitation yes-text no-text) −→ query procedure

These create the various queries. invitation is a text displayed in front
of the input field, e.g.“Please enter your password:”. make-text creates
a text input field, make-number creates a number input field (i.e.a text
input field that only accepts numbers as inputs), make-password creates
a password input field, make-boolean creates a checkbox, make-radio
creates a group of radio buttons of which only one can be selected and
make-yes-no creates a radio group that allows the choices yes-text and
no-text.

The value of make-text, make-number and make-password is the text or
number entered into the input field. The value of make-boolean is #tor
#f. The value of make-radio and make-yes-no is the selected choice, a
string.

85

(extract/single symbol table) −→ any value procedure
(extract symbol table) −→ list procedure

Return the answer of a user to a query. table is the result of
form-query, symbol the symbol used to identify the query of interest. For
extract/single, it is an error if there is more than one query in table that
is identified by symbol.

86

Chapter 7

FTP Server

The ftpd structure contains a complete anonymous ftp server.

(ftpd options) −→ no return value procedure
(ftp-inetd options) −→ no return value procedure

Ftpd starts the server, using anonymous-home as the root directory of the
server.

ftpd-inetd is the version to be used from inetd. Ftpd-inetd handles
the connection through the current standard output and input ports.

The options argument can be constructed through a number of procedures with
names of the form with-.... Each of these procedures either creates a fresh op-
tions value or adds a configuration parameter to an old options argument. The
configuration parameter value is always the first argument, the (old) options
value the optional second one. Here they are:

(with-port port [options]) −→ options procedure

This specifies the port on which the server listens. Defaults to 21.

(with-anonymous-home string [options]) −→ options procedure

This specifies the home directory for anonymous logins. Defaults to
"~ftp".

(with-banner list [options]) −→ options procedure

This specifies an alternative greeting banner for those members of the
Untergrund who prefer to remain covert. The banner is represented as a
list of strings, one for each line of output.

(with-log-port output-port [options]) −→ options procedure

87

If this is non-#f, exftpd outputs a log entry for each file sent or retrieved
on output-port. Defaults to #f.

(with-dns-lookup? boolean [options]) −→ options procedure

If dns-lookup? is #t, the log file will contain the host names instead of their
IP addresses. If dns-lookup? is #f, the log will only contain IP addresses.
Defaults to #f.

The make-ftpd-options eases the construction of the options argument:

(make-ftpd-options transformer value . . .) −→ options procedure

This constructs an options value from an argument list of parameter
transformers and parameter values. The arguments come in pairs, each
an option transformer from the list above, and a value for that parameter.
Make-ftpd-options returns the resulting options value.

The log format of ftpd is the same as the one of wuftpd. The entries look
like this:

Fri Apr 19 17:08:14 2002 4 134.2.2.171 56881 /files.lst b _ i a nop@ssword ftp 0 *

These are the fields:

1. Current date and time. This field contains spaces and is 24 characters
long.

2. Transfer time in seconds.

3. Remote host IP (wu-ftpd puts the name here).

4. File size in bytes

5. Name of file (spaces are converted to underscores)

6. Transfer type: ascii or binary (image type).

7. Special action flags. As ftpd does not support any special action, it al-
ways has here.

8. File was sent to user (outgoing) or received from user (incoming)

9. Anonymous access

10. Anonymous ftp password.

11. Service name—always ftp.

12. Authentication mode (always “none” = ‘0’).

88

13. Authenticated user ID (always “not available” = ‘*’)

The server also writes log information to the syslog facility. The following
syslog levels occur in the output:

notice • messages concerning connections (establishing connection, con-
nection refused, closing connection due to timeout, etc.)

• the execution of the STOR command
Its success (i.e.somebody is putting something on your server via
ftp, also known as PUT) is also logged at notice.

• internal errors

• Unix errors

• reaching of actually unreachable case branches

info Messages concerning all other commands, including the RETR command.

debug all other messages, including debug messages

89

Chapter 8

FTP Client

The ftp structure lets you transfer files between networked machines from the
Scheme Shell, using the File Transfer Protocol as described in RFC 959.

Some of the procedures in this module extract useful information from
the server’s reply, such as the size of a file, or the name of the directory we
have moved to. These procedures return the extracted information, or, if the
server’s response doesn’t match the expected code from the server, a catchable
ftp-error is raised.

(ftp-connect host login password passive? [log-port]) −→ connection procedure

Open a command connection with the remote machine host and login
on that server with login and password. Login and password can be #f,
in which case the information is extracted from the user’s .netrc file if
necessary.

If log-port is specified, it must be an output port: this starts logging the
conversation with the server to that port. Note that the log contains pass-
words in clear text.

(ftp-type 〈name 〉) −→ ftp-type syntax
(set-ftp-type! connection ftp-type) −→ undefined procedure

This change the transfer mode for future file transfers. The transfer mode
is specfified by ftp-type which can be created with the ftp-type macro.
〈Name 〉 must be either binary for binary data or ascii for text.

(ftp-rename connection old new) −→ undefined procedure

This changes the name of old on the remote host to new (assuming suffi-
cient permissions). Old and new are strings.

90

(ftp-delete connection file) −→ undefined procedure

This deletes file from the remote host (assuming the user has appropriate
permissions).

(ftp-cd connection dir) −→ undefined procedure

This changes the current directory on the server.

(ftp-cdup connection) −→ undefined procedure

This move to the parent directory on the server.

(ftp-pwd connection) −→ string procedure

Return the current directory on the remote host, as a string.

(ftp-ls connection [dir]) −→ list procedure

This returns a list of filenames on the remote host, either from the current
directory (if dir is not specified), or from the directory specified by dir.

(ftp-dir connection [dir]) −→ status procedure

This returns a list of long-form file name entries on the remote host, either
from the current directory (if dir is not specified), or from the directory
specified by dir. (Note that the format for the long-form entries is not
specified by the FTP standard.)

(ftp-get connection remote-file proc) −→ undefined procedure

This downloads remote-file from the FTP server. Ftp-get establishes a
data conneciton to the server, attaches an input port to the data connec-
tion, and calls proc on that port.

(ftp-put connection remote-file proc) −→ undefined procedure

This uploads remote-file to the FTP server. Ftp-put establishes a data con-
neciton to the server, attaches an output port to the data connection, and
calls proc on that port.

(ftp-append connection remote-file proc) −→ undefined procedure

This appends data to remote-file on the FTP server. Ftp-append estab-
lishes a data conneciton to the server, attaches an output port to the data
connection, and calls proc on that port.

(ftp-rmdir connection dir) −→ undefined procedure

This removes the directory dir from the remote host (assuming sufficient
permissions).

91

(ftp-mkdir connection dir) −→ undefined procedure

This create a new directory named dir on the remote host (assuming suf-
ficient permissions).

(ftp-modification-time connection file) −→ date procedure

This requests the time of the last modification of file on the remote host,
and on success return a Scsh date record. (This command is not part of
RFC 959 and is not implemented by all servers, but is useful for mirror-
ing.)

(ftp-size connection file) −→ integer procedure

This returns the size of file in bytes. (This command is not part of RFC 959
and is not implemented by all servers.)

(ftp-quit connection) −→ undefined procedure

This closes the connection to the remote host. The connection object is
useless after a quit command.

(ftp-quot connection command) −→ status procedure

This sends a command verbatim to the remote server and wait for a re-
sponse. The response text is returned verbatim.

(ftp-error? thing) −→ boolean procedure

This returns #t if thing is a ftp-error object, otherwise #f.

(copy-port->port-binary input-port oputput-port) −→ undefined procedure
(copy-port->port-ascii input-port oputput-port) −→ undefined procedure
(copy-ascii-port->port input-port oputput-port) −→ undefined procedure

These procedures are useful for downloading and uploading data to an
FTP connection via ftp-get, ftp-get, and ftp-append. They all copy
data from one port to another. Copy-port->port-binary copies verba-
tim, while the other two perform CR/LF conversion for ASCII data trans-
fers. Copy-port->port-ascii adds CR/LFs at line endings on output,
whereas Copy-ascii-port->port removes CR/LFs at line endings end
replaces them by ordinary LFs.

92

Chapter 9

Parsing Netrc Files

The netrc structures provides procedures to parse authentication information
contained in /.netrc.

On Unix systems the netrc file may contain information allowing automatic
login to remote hosts. The format of the file is defined in the ftp(1) manual
page. Example lines are

machine ondine.cict.fr login marsden password secret
default login anonymous password user@site

The netrc file should be protected by appropriate permissions, and (like
/usr/bin/ftp) this library will refuse to read the file if it is badly protected.
(unlike ftp this library will always refuse to read the file—-ftp refuses it only
if the password is given for a non-default account). Appropriate permissions
are set if only the user has permissions on the file.

(netrc-machine-entry host accept-default? [file-name]) −→ netrc-entry-or-#f procedure

This procedure looks for the entry related to given host in the user’s
netrc file. The host is specified in host. Accept-default? specifies whether
netrc-machine-entry should fall back to the default entry if there is no
macht for host in the netrc file. If specified, file-name specifies an alternate
file name for the netrc data. It defaults to .netrc in the current user’s
home directory.

Netrc-machine-entry returns a netrc entry (see below) if it was able to
find the requested information; if not, it returns #f.

If the netrc file had inappropriate permissions, netrc-machine-entry
raises an error.

93

(netrc-entry? thing) −→ boolean procedure
(netrc-entry-machine netrc-entry) −→ string procedure
(netrc-entry-login netrc-entry) −→ string-or-#f procedure
(netrc-entry-password netrc-entry) −→ string-or-#f procedure
(netrc-entry-account netrc-entry) −→ string-or-#f procedure

Netrc-entry? is the predicate for netrc entries. The other procedures are
selectors for netrc entries as returned by netrc-machine-entry. They
return #f if the netrc file didn’t contain a binding for the corresponding
field.

(netrc-macro-definitions [file-name]) −→ alist procedure

This returns the macro definitions from the netrc files, represented as
an alist mapping macro names—represented as strings—to definitions—
represented as lists of strings.

94

Chapter 10

RFC 822 Library

The rfc822 structure provides rudimentary support for parsing headers ac-
cording to RFC 822 Standard for the format of ARPA Internet text messages. These
headers show up in SMTP messages, HTTP headers, etc.

An RFC 822 header field consists of a field name and a field body, like so:

Subject: RFC 822 can format itself in the ARPA

Here, the field name is ‘Subject’, and the field name is ‘ RFC 822 can format
itself in the ARPA’ (note the leading space). The field body can be spread
over several lines:

Subject: RFC 822 can format itself
in the ARPA

In this case, RFC 822 specifies that the meaning of the field body is actually all
the lines of the body concatenated, without the intervening line breaks.

The rfc822 structure provides two sets of parsing procedures—one repre-
sents field bodies in the RFC-822-specified meaning, as a single string, the other
(with -with-line-breaks appended to the names) reflects the line breaks and
represents the bodies as a list of string, one for each line. The latter set only
marginally useful—mainly for code that needs to output headers in the same
form as they were originally provided.

(read-rfc822-field [port] [read-line]) −→ name body procedure

(read-rfc822-field-with-line-breaks [port] [read-line]) −→ name body-lines procedure

Read one field from the port, and return two values:

95

name This is a symbol describing the field name, such as subject or to.
The symbol consists of all lower-case letters.1

body or body-lines This is the field body. Body is a single string, body-lines
is a list of strings, one for each line of the body. In each case, the ter-
minating cr/lf’s (but nothing else) are trimmed from each string.

When there are no more fields—EOF or a blank line has terminated the
header section—then both procedures returns [#f #f].

Port is an optional input port to read from—it defaults to the value of
(current-input-port).

Read-line is an optional parameter specifying a procedure of one argu-
ment (the input port) used to read the raw header lines. The default used
by these procedures terminates lines with either cr/lf or just lf, and it
trims the terminator from the line. This procedure should trim the termi-
nator of the line, so an empty line is returned as an empty string.

The procedure raises an error if the syntax of the read field (the line re-
turned by the read-line-function) is illegal according to RFC 822.

(read-rfc822-headers [port] [read-line]) −→ alist procedure
(read-rfc822-headers-with-line-breaks [port] [read-line]) −→ alist procedure

This procedure reads in and parses a section of text that looks like the
header portion of an RFC 822 message. It returns an association list
mapping field names (a symbol such as date or subject) to field bod-
ies. The representation of the field bodies is as with read-rfc822-field
and read-rfc822-field-with-line-breaks.

These procedures preserve the order of the header fields. Note that sev-
eral header fields might share the same field name—in that case, the re-
turned alist will contain several entries with the same car.

Port and read-line are as with read-rfc822-field and
read-rfc822-field-with-line-breaks.

(rfc822-time->string time) −→ string procedure

This formats a time value (as returned by scsh’s time) according to the
requirements of the RFC 822 Date header field. The format looks like
this:

Sun, 06 Nov 1994 08:49:37 GMT

1In fact, it read-rfc822-field uses the preferred case for symbols of the underlying Scheme
implementation which, in the case of scsh, happens to be lower-case.

96

Chapter 11

Time and Daytime

Many Unix hosts provide a RFC 867 Daytime service which sends the current
date and time as a human-readable character string. The daytime service is
typically served on port 13 as both TCP and UDP.

The RFC 868 Time protocol provides a site-independent, machine readable
date and time. The Time service is typically served on port 37 as TCP and
UDP. The idea is that you can confirm your system’s idea of the time by polling
several independent sites on the network.

11.1 Daytime

The rfc867 structure contains an interface to Daytime protocol.

(rfc867-daytime/tcp host) −→ string procedure
(rfc867-daytime/udp host [timeout-or-#f]) −→ string-or-#f procedure

These procedures asks host about the current daytime and return the
host’s answer (e.g., “Thursday, April 4, 2”).

Rfc867-daytime/tcp uses the TCP variant of the protocol.
Rfc867-daytime/udp uses UDP and sends a single request to the
server. It allows the specification of an optional timeout; if not specified
or #f, Rfc867-daytime/udp will wait indefinitely for an answer. If
the answer from the server doesn’t arrive within the specified time,
rfc867-daytime/udp returns #f.

11.2 Time

The rfc868 structure contains an interface to the Time protocol.

97

(rfc868-time/tcp host) −→ string procedure
(rfc868-time/udp host [timeout-or-#f]) −→ string-or-#f procedure

These procedures asks host about the current time and return the host’s
answer. This is the number of second since 1970, just as with scsh’s time
procedure.

rfc868-time/tcp uses the TCP variant of the protocol. rfc868-time/udp
uses UDP and sends a single request to the server. It allows the specifica-
tion of an optional timeout; if not specified or #f, rfc868-time/udp will
wait indefinitely for an answer. If the answer from the server doesn’t
arrive within the specified time, rfc868-time/udp returns #f.

98

Chapter 12

SMTP Client

The smtp structure provides an client library for the Simple Mail Transfer Pro-
tocol, commonly used for sending email on the Internet. This library provides
a simple wrapper for sending complete emails as well as procedures for com-
posing custom SMTP transactions.

Some of the procedures described here return an SMTP reply code. For
details, see RFC 821.

(smtp-send-mail from to-list headers body [host]) −→ undefined procedure
(smtp-error? thing) −→ boolean procedure
(smtp-recipients-rejected-error? thing) −→ boolean procedure

This emails message body with headers headers to recipients in list to-list,
using a sender address from. The email is handed off to the SMTP server
running on host; default is the local host. Body is either a list of strings
representing the lines of the message body or an input port which is ex-
hausted to determine the message body. Headers is an association lists,
mapping symbols representing RFC 822 field names to strings represent-
ing field bodies.

If some transaction-related error happens, smtp-send-mail signals an
smtp-error condition with predicate smtp-error?. More specifically, it
raises an smtp-recipients-rejected-error (a subtype of smtp-error)
if some recipients were rejected. For smtp-error, the arguments to the
signal call are the error code and the error message, represented as a
list of lines. For smtp-recipients-rejected-error, the arguments are
reply code 700 and an association list whose elements are of the form
(loser-recipient code . text)—that is, for each recipient refused by the
server, you get the error data sent back for that guy. The success check is
(< code 400).

99

(smtp-expand name host) −→ code text procedure
(smtp-verify name host) −→ code text procedure
(smtp-get-help host [details]) −→ code text-list procedure

These three are simple queries of the server as stated in the RFC 821:
smtp-expann asks the server to confirm that the argument identifies a
mailing list, and if so, to return the membership of that list. The full name
of the users (if known) and the fully specified mailboxes are returned
in a multiline reply. Smtp-verify asks the receiver to confirm that the
argument identifies a user. If it is a user name, the full name of the user
(if known) and the fully specified mailbox are returned. Smtp-get-help
causes the server to send helpful information. The command may take
an argument (details) (e.g., any command name) and return more specific
information as a response.

(smtp-connect host [port]) −→ smtp-connection procedure

Smtp-connect returns an SMTP connection value that represents a con-
nection to the SMTP server.

(smtp-transactions smtp-connection transaction1 ...) −→ code text-list procedure
(smtp-transactions/no-close smtp-connection transaction1 ...) −→ code text-list procedure

These procedures make it easy to do simple sequences of SMTP
commands. Smtp-connection must be an SMTP connection as re-
turned by smtp-connect. The transaction arguments must be transac-
tions as returned by the procedures below. Smtp-transactions and
smtp-transactions/no-close execute the transactions specified by the
arguments.

For each transaction,

• If the transaction’s reply code is 221 or 421 (meaning the socket
has been closed), then the transaction sequence is aborted, and
smtp-transactions/smtp-transactions/no-close return the re-
ply code and text from that transaction.

• If the reply code is an error code (in the four- or five-hundred range),
the transaction sequence is aborted, and the fatal transaction’s code
and text values are returned. Smtp-transactions will additionally
close the socket for you; smtp-transactions/no-close will not.

• If the transaction is the last in the transaction sequence, its reply
code and text are returned.

• Otherwise, we throw away the current reply code and text, and pro-
ceed to the next transaction.

100

Smtp-transactions closes the socket after the transaction. (The
smtp-quit transaction, when executed, also closes the transaction.)

If the socket should be kept open in the case of an abort, use
Smtp-transactions/no-close.

(smtp-helo local-host-name) −→ smtp-transaction procedure
(smtp-mail sender-address) −→ smtp-transaction procedure
(smtp-rcpt destination-address) −→ smtp-transaction procedure
(smtp-data socket message) −→ smtp-transaction procedure
(smtp-send sender-address) −→ smtp-transaction procedure
(smtp-soml sender-address) −→ smtp-transaction procedure
(smtp-saml sender-address) −→ smtp-transaction procedure
smtp-rset smtp-transaction
(smtp-vrfy user) −→ smtp-transaction procedure
(smtp-expn user) −→ smtp-transaction procedure
(smtp-help details) −→ smtp-transaction procedure
smtp-noop smtp-transaction
smtp-quit smtp-transaction
smtp-turn smtp-transaction

These transactions represent the commands of the SMTP protocol for use
in smtp-transactions and smtp-transactions/no-close, i.e. they send
the corresponding command along with the argument(s), if any. For de-
tails, consult RFC 821.

The smtp-quit transaction, in addition to sending a QUIT command to
the SMTP server, also closes the socket of its SMTP connection.

101

Chapter 13

POP3 Client

The pop3 structure provides a client for the POP3 protocol that allows access
to email on a maildrop server. It is often used in configurations where users
connect from a client machine which doesn’t have a permanent network con-
nection or isn’t always turned on, situations which make local SMTP delivery
impossible. It is the most common form of email access provided by ISPs.

Two types of authentication are commonly used. The first, most basic type
involves sending a user’s password in clear over the network, and should be
avoided. (Unfortunately, many POP3 clients only implement this basic au-
thentication.) The digest authentication system involves the server sending the
client a “challenge” token; the client encodes this token with the pass phrase
and sends the coded information to the server. This method avoids sending
sensitive information over the network. Both methods are implemented by
pop3.

Once connected, a client may request information about the number and
size of the messages waiting on the server, download selected messages (either
their headers or the entire content), and delete selected messages.

The procedures defined here raise an error detectable via pop3-error?
upon protocol errors with the POP3 server.

(pop3-connect [host-or-#f] [login-or-#f] [password-or-#f] [log-port]) −→ connection procedure

This procedure connects to the maildrop server named host, and logs in
using the provided login name and password. Any of these can be omit-
ted or #f, in which case the procedure uses defaults: MAILHOST for the
host, and /.netrc-provided values for login and password. If log-port is
provided, the conversation to the server is logged to the specified output
port.

102

Pop3-connect returns a value representing the connection to the POP3
server, to be used in the procedures below.

(pop3-stat connection) −→ number bytes procedure

This returns the number of messages and the number of bytes waiting in
the maildrop.

Most of the following procedures accept a msgid argument which specifies
a message number, which ranges from 1 for the first message to the number
returned by pop3-stat.

(pop3-retrieve-message connection msgid) −→ headers message procedure

This downloads message number msgid from the mailhost. It returns the
headers as an alist of field names and bodies; the names are symbols,
the bodies are strings. (These are obtained using the rfc822 structure,
see Section 10.) The message is returned as a list of strings, each string
representing a line of the message.

(pop3-retrieve-headers connection msgid) −→ headers procedure

This downloads the headers of message number msgid. It returns the
headers in the same format as pop3-retrieve-message.

(pop3-last connection) −→ msgid procedure

This returns the highest accessed message-id number for the current ses-
sion. (This isn’t in the RFC, but seems to be supported by several servers.)

(pop3-delete connection msgid) −→ undefined procedure

This mark message number msgid for deletion. The message will not be
deleted until the client logs out.

(pop3-reset connection) −→ undefined procedure

This marks any messages which have been marked for deletion.

(pop3-quit connection) −→ undefined procedure

This closes the connection with the mailhost.

(pop3-error? thing) −→ boolean procedure

This returns #t if thing is a pop3-error object, otherwise #f.

103

Chapter 14

DNS Client Library

Used files: dns.scm

Name of the package: dns

14.1 Overview

The dns structure contains a library for querying DNS servers. The library
contains sophisticated replacements for scsh’s interface to the gethostbyname
and gethostbyaddr and many extensions to these functions.

The main features of the libraray include:

• Complete implementation of the DNS protocol

• Concurrent contacting of multiple DNS servers without blocking the scsh
process

• Internal caching of DNS responses

• Parsing of resolv.conf, including search entries to generate FQDNs
from unqualified host names

• Rich condition hierarchie

14.2 Conditions

The library defines a set of conditions raised by the procedures of the library.
The supertype of these conditions is dns-error.

(dns-error? thing) −→ boolean procedure

104

The predicate for dns-error conditions.

(dns-error->string dns-error-condition) −→ string procedure

Returns a string with the description of the condition.

parse-error condition
unexpected-eof-from-server condition
bad-address condition
no-nameservers condition
bad-nameserver condition
not-a-hostname condition
not-a-ip condition

dns-format-error condition
dns-server-failure condition
dns-name-error condition
dns-not-implemented condition
dns-refused condition

These conditons correspond to errors returned by the DNS server. They
are all subtypes of the dns-server-error condition which in turn is a
subtype of dns-error.

(dns-server-error? thing) −→ boolean procedure

The predicate for dns-server-error conditions.

(parse-error? thing) −→ boolean procedure
(unexpected-eof-from-server? thing) −→ boolean procedure
(bad-address? thing) −→ boolean procedure
(no-nameservers? thing) −→ boolean procedure
(bad-nameserver? thing) −→ boolean procedure
(not-a-hostname? thing) −→ boolean procedure
(not-a-ip? thing) −→ boolean procedure
(dns-format-error? thing) −→ boolean procedure
(dns-server-failure? thing) −→ boolean procedure
(dns-name-error? thing) −→ boolean procedure
(dns-not-implemented? thing) −→ boolean procedure
(dns-refused? thing) −→ boolean procedure

The type predicates for the conditions above.

105

14.3 High-level Interface

The library uses an internal store to cache data obtained from DNS servers.
All procedures take a boolean flag use-cache? that indicates whether the cache
should be used or not. use-cache? defaults to true.

(dns-clear-cache!) −→ undefined procedure

This procedure erases all information stored in the internal cache.

The library is further capable of parsing the contents of /etc/resolv.conf
(see Section 14.5). The nameservers listed there are the default value for the
optional argument nameserver list which many procedures of the library accept.
Nameserver is either a IP-address or a dotted IP string.

(dns-lookup-name FQDN [nameserver list][use-cache?]) −→ IP-address procedure

Given the FQDN of a host, dns-lookup-ip returns the IP address. The
optional argument specifes the name servers to query, it defaults to the
ones found in /etc/resolv.conf.

(dns-lookup-ip IP-string/IP-address [nameserver list][use-cache?]) −→ FQDN procedure

Looks up the FQDN for the given IP address. The optional argument
specifes the name servers to query, it defaults to the ones found in
/etc/resolv.conf.

(dns-lookup-nameserver IP-string/IP-address [nameserver list][use-cache?]) −→ IP-address list procedure

Looks up an authoritative name server for a hostname, returns a list of
name servers.

(dns-lookup-mail-exchanger IP-string/IP-address [nameserver list][use-cache?]) −→ FQDN list procedure

Looks up mail-exchangers for a hostname und returns them in a list
sorted by preference.

(socket-address->fqdn socket-address [nameserver list][use-cache?]) −→ FQDN procedure

Returns the FQDN for of the address bound to argument. The argument
cache? indicates whether the internal cache may be queried to obtain the
information.

(maybe-dns-lookup-name FQDN [nameserver list][use-cache?]) −→ IP-address or #f procedure
(maybe-dns-lookup-ip IP-string/IP-address [nameserver list][use-cache?]) −→ FQDN or #f procedure

These procedures provide the same functionality as dns-lookup-name
and dns-lookup-ip but return #f in case of an dns-error.

106

(host-fqdn name/socket-address [nameserver list][use-cache?]) −→ FQDN procedure
(system-fqdn [nameserver list][use-cache?]) −→ FQDN procedure

host-fqdn returns the fully qualified domain name (FQDN) for its argu-
ment which can be either a unqualified host name or a socket address.
The procedure system-fqdn returns the FQDN of the local host. These
procedures use a list of domain names obtained from /etc/resolv.conf
to the generate FQDNs and try to resolve these FQDNs.

(dns-check-nameservers [nameserver list]) −→ undefined procedure

dns-check-namservers checks if the given nameservers are reachable.
If no argument is given, the nameservers in /etc/resolv.conf are
checked. Information about the status of the nameservers is printed to
the current output port.

14.4 Low-level Interface

This section describes a set of data structures and procedures which directly
correspond to the data flow of the DNS protocol. The central entity is a message,
the abstraction of the packet sent to the server or received from the server (The
DNS protocol uses the same data format for both directions). A dns-message en-
capsulates the query message sent to the server, the response message received
from the server, and some additional information the library gathered while
generating the dns-message.
(dns-get-information message protocol answer-okay? [nameserver list][use-cache?]) −→ dns-message procedure

Most general way to submit a DNS query. The message is sent to the
name servers via protocol which can be either (network-procotcol tcp)
or (network-protocol udp), both members of of the enumerated type
network-protocol. After receiving the reply, dns-get-information ap-
plies the predicate answer-okay? to the message. If it returns #f and the an-
swer is not authoritative additional name servers sent with the reply are
checked until an authoritative answer is found. If the predicate returns
#f but the answer is authoritative a bad-address condition is signalled.

(network-protocol protocol-name) −→ network-protocol syntax
(network-protocol? thing) −→ boolean procedure

Constructor and predicate for the enumerated type network-protocol
with the possible protocol names tcp and udp.

(dns-lookup IP-string/IP-address type [nameserver list][use-cache?]) −→ dns-message procedure

Convenient shortcut to submit a DNS query. The return value is a
dns-message structure:

107

(dns-message? thing) −→ boolean procedure
(dns-message-query dns-message) −→ message procedure
(dns-message-reply dns-message) −→ message procedure
(dns-message-cache? dns-message) −→ boolean procedure
(dns-message-protocol dns-message) −→ protocol procedure
(dns-message-tried-nameservers dns-message) −→ procedure

A dns-message records the query sent to the server and the reply from the
server. It also contains information whether the library took the reply
from the cache, which protocol was used and to which nameservers the
query was sent.

(pretty-print-dns-message dns-message [output-port]) −→ undefined procedure

Pretty prints a DNS message to out-port which defaults to the current
output port.

(message? thing) −→ boolean procedure
(message-header message) −→ header procedure
(message-questions message) −→ question list procedure
(message-answers message) −→ resource-record list procedure
(message-nameservers message) −→ resource-record list procedure
(message-additionals message) −→ resource-record list procedure
(message-source message) −→ char list procedure

A message represents the data sent to the DNS server or received from the
DNS server. The DNS protocol uses the same message format for queries
and replies. In queries only the header and the questions is present, a re-
ply may contain answers, name servers and and additional informations
as resource records. Message-source returns the actual data sent over
the network.

(make-query-message header header question [questions]) −→ message procedure

The procedure generates a message the supplied questions, header, and
the standard message values for queries.

(make-simple-query-message name type class) −→ message procedure

This simplified constructor generates a message with one question which
is built from the parameters, and the standard header flags for queries
and the standard message values for queries.

(header? thing) −→ boolean procedure
(header-id header) −→ number procedure
(header-flags header) −→ flags procedure
(header-question-count header) −→ number procedure

108

(header-answer-count header) −→ number procedure
(header-nameserver-count header) −→ number procedure
(header-additional-count header) −→ number procedure

Every DNS message contains a header which stores information about
the data present in the message and contains flags for the query.

(flags? thing) −→ boolean procedure
(flags-query-type flags) −→ ’query or ’response procedure
(flags-opcode flags) −→ number procedure
(flags-authoritative? flags) −→ boolean procedure
(flags-truncated? flags) −→ boolean procedure
(flags-recursion-desired? flags) −→ boolean procedure
(flags-recursion-available? flags) −→ boolean procedure
(flags-zero flags) −→ 0 procedure
(flags-response-code flags) −→ number procedure

Flags occur within the header of a DNS message. The boolean value re-
turned from flags-authoritative indicates whether the message was
sent from a authoritative server, flags-truncated? should always be
#fas the library automatically uses the TCP protocol is the UDP message
size is not sufficied.

(question? thing) −→ boolean procedure
(question-name question) −→ string procedure
(question-type question) −→ message-type procedure
(question-class question) −→ message-class procedure

A question sent to the DNS server.

The type and class of the question and answer are elements of enumerated
types:

(message-class class-name) −→ message-class syntax
(message-class? thing) −→ boolean procedure
(message-class-name message-class) −→ symbol procedure
(message-class-number message-class) −→ number procedure

message-class constructs a member of the enumerated type,
message-class? is the type predicate, message-class-name returns
the symbol and message-class-number the number used for the class in
the DNS protocol.

The possible names for the classes are:

in The Internet

cs obsolete

109

ch the CHAOS class

hs Hesoid

(message-type type-name) −→ message-type syntax
(message-type? thing) −→ boolean procedure
(message-type-name message-type) −→ symbol procedure
(message-type-number message-type) −→ number procedure

message-type constructs a member of the enumeration from name
〈 type-name 〉 listed in Table 14.1. message-type? is the type predicate,
message-type-name returns the name, and message-type-number the
number used for the class the DNS protocol.

a a host address
ns an authoritative name server
md (obsolete)
mf (obsolete)
cname the canonical name for an alias
soa marks the start of a zone of authority
mb (experimental)
mg (experimental)
mr (experimental)
null (experimental)
wks a well known service description
ptr a domain name pointer
hinfo host information
minfo (experimental)
mx mail exchange
txt text strings

Table 14.1: Message types

(resource-record? thing) −→ boolean procedure
(resource-record-name resource-record) −→ string procedure
(resource-record-type resource-record) −→ message-type procedure
(resource-record-class resource-record) −→ message-class procedure
(resource-record-ttl resource-record) −→ number procedure
(resource-record-data resource-record) −→ resource-record-data-. . . procedure

A resource record as returned from the DNS server. The actual data of
the record is stored in the resource-record-data field. It is one of the
record types for resource record data described below.

110

(resource-record-data-a? thing) −→ boolean procedure
(resource-record-data-a-ip resource-record-data-a) −→ IP-address procedure

An address resource record which holds an internet address.

(resource-record-data-ns? thing) −→ boolean procedure
(resource-record-data-ns-name resource-record-data-ns) −→ FQDN procedure

A name server resource record containing the FQDN of the name server.

(resource-record-data-cname? thing) −→ boolean procedure
(resource-record-data-cname-name resource-record-data-cname) −→ FQDN procedure

A canonical name resource record which contains the canonical or pri-
mary name of the owner.

(resource-record-data-mx? thing) −→ boolean procedure
(resource-record-data-mx-preference resource-record-data-mx) −→ number procedure
(resource-record-data-mx-exchanger resource-record-data-mx) −→ FQDN procedure

A mail exchange resource record with the preference and the FQDN of a
host willing to act as a mail exchange.

(resource-record-data-ptr? thing) −→ boolean procedure
(resource-record-data-ptr-name resource-record-data-ptr) −→ string procedure

A pointer resource record which points to some other domain name.

(resource-record-data-soa? thing) −→ boolean procedure
(resource-record-data-soa-mname resource-record-data-soa) −→ FQDN procedure
(resource-record-data-soa-rname resource-record-data-soa) −→ FQDN procedure
(resource-record-data-soa-serial resource-record-data-soa) −→ number procedure
(resource-record-data-soa-refresh resource-record-data-soa) −→ number procedure
(resource-record-data-soa-retry resource-record-data-soa) −→ number procedure
(resource-record-data-soa-expire resource-record-data-soa) −→ number procedure
(resource-record-data-soa-minimum resource-record-data-soa) −→ number procedure

A start of a zone of authority resource record.

The protocol specifies other possible values for the resource-record-data
field but we where no able to find test cases for them.

(cache? thing) −→ boolean procedure
(cache-answer cache) −→ dns-message procedure
(cache-ttl cache) −→ number procedure
(cache-time cache) −→ number procedure

A cache data structure corresponds to a saved answer to a previous query.
cache-answer returns the saved message, cache-ttl returns the time
when the cache entry expires and cache-time returns the time the en-
try was created.

111

14.5 Parsing /etc/resolv.conf

resolv.conf-parse-error condition

(resolv.conf-parse-error? thing) −→ boolean procedure

The code signals the condition resolv.conf-parse-error if a parse error oc-
curs while scanning /etc/resolv.conf. It is a subtype of the dns-error
condition. resolv.conf-parse-error? is the type predicate for this con-
dition.

(resolv.conf) −→ symbol→string alist procedure

Returns the contents of /etc/resolv.conv as an alist with the possible
keys nameserver, domain, search, sortlist and options.

Note that the library caches the contents of /etc/resolv.conv and
resolv.conf only really opens the file if its modification time is more
recent than the modification time of the cache.

(parse-resolv.conf!) −→ undefined procedure

Parses the contents of /etc/resolv.conv and updates the internal cache
of the library.

(dns-find-nameserver-list) −→ FQDN list procedure

Returns a list of name servers from /etc/resolv.conf

(dns-find-nameserver) −→ FQDN procedure

Returns the first name servers found in /etc/resolv.conf.
dns-find-nameserver raises no-nameservers if /etc/resolv.conf
does not contain a nameserver entry.

(domains-for-search) −→ string list procedure

Parses /etc/resolv.conf and extracts the domains specified by the
search keyword.

14.6 IP Addresses as Dotted Strings

Used files: ip.scm

Name of the package: ips

112

The structure ips provides a small set of procedures for turning the human-
readable form of IP addresses (“dotted strings”) into 32 bits numbers.

(address32->ip-string IP-address) −→ ip-string procedure

(ip-string->address32 ip-string) −→ IP-address procedure

(ip-string? string) −→ boolean procedure

Tests whether string is a valid dotted string for an IP address.

113

Index

COMMENT, 69

address-annotated?, 81
address-annotation, 81
address-name, 81
address32->ip-string, 113
alist-path-dispatcher, 15
attribute-rule, 71

bad-address, 105
bad-address?, 105
bad-nameserver, 105
bad-nameserver?, 105

cache-answer, 111
cache-time, 111
cache-ttl, 111
cache?, 111
callback-function, 82
case-returned-via, 80
cgi-form-query, 30
cgi-handler, 19
comment-rule, 71
continuation-id, 65
continuation-URL, 71
copy-ascii-port->port, 92
copy-port->port-ascii, 92
copy-port->port-binary, 92

default-rule, 71
default-rules, 71
display-low-level-sxml, 70
dns-check-nameservers, 107
dns-error, 104

dns-error->string, 105
dns-error?, 104
dns-find-nameserver, 112
dns-find-nameserver-list, 112
dns-format-error, 105
dns-format-error?, 105
dns-get-information, 107
dns-lookup, 107
dns-lookup-ip, 106
dns-lookup-mail-exchanger, 106
dns-lookup-name, 106
dns-lookup-nameserver, 106
dns-message-cache?, 108
dns-message-protocol, 108
dns-message-query, 108
dns-message-reply, 108
dns-message-tried-nameservers,

108
dns-message?, 108
dns-name-error, 105
dns-name-error?, 105
dns-not-implemented, 105
dns-not-implemented?, 105
dns-refused, 105
dns-refused?, 105
dns-server-error, 105
dns-server-error?, 105
dns-server-failure, 105
dns-server-failure?, 105
domains-for-search, 112

escape-uri, 24
eval-safely, 20

114

extract, 86
extract-bindings, 73
extract-single-binding, 73
extract/single, 86

final-page, 85
flags-authoritative?, 109
flags-opcode, 109
flags-query-type, 109
flags-recursion-available?, 109
flags-recursion-desired?, 109
flags-response-code, 109
flags-truncated?, 109
flags-zero, 109
flags?, 109
form-query, 85
ftp-append, 91
ftp-cd, 91
ftp-cdup, 91
ftp-connect, 90
ftp-delete, 91
ftp-dir, 91
ftp-error?, 92
ftp-get, 91
ftp-inetd, 87
ftp-ls, 91
ftp-mkdir, 92
ftp-modification-time, 92
ftp-put, 91
ftp-pwd, 91
ftp-quit, 92
ftp-quot, 92
ftp-rename, 90
ftp-rmdir, 91
ftp-size, 92
ftp-type, 90
ftpd, 87

generate-input-field-name, 79
get-bindings, 73
get-content-length, 73
get-continuations, 64
get-loaded-surflets, 60
get-session, 63

get-session-data, 65
get-sessions, 63

header-additional-count, 109
header-answer-count, 109
header-flags, 108
header-id, 108
header-nameserver-count, 109
header-question-count, 108
header?, 108
home-dir-handler, 18
host-fqdn, 107
http-url->string, 28
http-url-frag-ment-identifier, 28
http-url-path, 28
http-url-search, 28
http-url-server, 28
http-url?, 28
httpd, 9

if-outdated, 83
inform, 85
input-field-attributes , 79
input-field-binding, 74
input-field-html-tree, 79
input-field-html-tree-maker, 79
input-field-multi?, 79
input-field-name, 79
input-field-transformer, 79
input-field-type, 79
input-field-value, 74
instance-session-id, 63
ip-string->address32, 113
ip-string?, 113

lifetime, 63
loser, 20

make-address, 81
make-annotated-address, 81
make-annotated-callback, 82
make-annotated-checkbox, 76
make-annotated-radio-group, 76
make-annotated-select-option, 77

115

make-boolean, 85
make-callback, 81
make-checkbox, 76
make-error-response, 12
make-file-directory-options, 18
make-ftpd-options, 88
make-hidden-input-field, 75
make-host-name-handler, 15
make-http-url, 28
make-httpd-options, 11
make-image-button, 75
make-input-field, 78
make-multi-input-field, 78
make-number, 85
make-number-field, 74
make-outdater, 83
make-password, 85
make-password-field, 74
make-path-predicate-handler, 15
make-path-prefix-handler, 15
make-predicate-handler, 15
make-query-message header, 108
make-radio, 85
make-radio-group, 76
make-reader-writer-body, 14
make-redirect-response, 12
make-reset-button, 75
make-response, 12
make-select, 77
make-server, 27
make-simple-query-message, 108
make-simple-select-option, 77
make-submit-button, 75
make-surflet-options, 58
make-surflet-response, 62
make-text, 85
make-text-field, 74
make-textarea, 74
make-writer-body, 14
make-yes-no, 85
maybe-dns-lookup-ip, 106
maybe-dns-lookup-name, 106
message-additionals, 108
message-answers, 108

message-class, 109
message-class-name, 109
message-class-number, 109
message-class?, 109
message-header, 108
message-nameservers, 108
message-questions, 108
message-source, 108
message-type, 110
message-type-name, 110
message-type-number, 110
message-type?, 110
message?, 108
my-continuation-id, 65
my-ids, 65
my-session-id, 65

name->status-code, 13
nbsp, 69
nbsp-rule, 71
netrc-entry-account, 94
netrc-entry-login, 94
netrc-entry-machine, 94
netrc-entry-password, 94
netrc-entry?, 94
netrc-machine-entry, 93
netrc-macro-definitions, 94
network-protocol, 107
network-protocol?, 107
no-nameservers, 105
no-nameservers?, 105
not-a-hostname, 105
not-a-hostname?, 105
not-a-ip, 105
not-a-ip?, 105
null-request-handler, 15

options-cache-surflets?, 59
options-make-session-timeout-text,

59
options-session-lifetime, 59
options-surflet-path, 59

parse-error, 105

116

parse-error?, 105
parse-html-form-query, 21
parse-http-url, 28
parse-http-url-string, 29
parse-server, 27
parse-uri, 23
plain-html, 69
plain-html-rule, 71
pop3-connect, 102
pop3-delete, 103
pop3-error?, 103
pop3-last, 103
pop3-quit, 103
pop3-reset, 103
pop3-retrieve-headers, 103
pop3-retrieve-message, 103
pop3-stat, 103
pretty-print-dns-message, 108

queries, 85
question-class, 109
question-name, 109
question-type, 109
question?, 109

raw-input-field-value, 74
read-rfc822-field, 95
read-rfc822-field-with-line-breaks,

95
read-rfc822-headers, 96
read-rfc822-headers-with-line-breaks,

96
request-handler, 14
request-headers, 12
request-method, 11
request-socket, 12
request-uri, 11
request-url, 11
request-version, 11
request?, 11
resolv.conf, 112
resolv.conf-parse-error, 112
resolv.conf-parse-error?, 112
resource-record-class, 110

resource-record-data, 110
resource-record-data-a-ip, 111
resource-record-data-a?, 111
resource-record-data-cname-name,

111
resource-record-data-cname?, 111
resource-record-data-mx-exchanger,

111
resource-record-data-mx-preference,

111
resource-record-data-mx?, 111
resource-record-data-ns-name, 111
resource-record-data-ns?, 111
resource-record-data-ptr-name,

111
resource-record-data-ptr?, 111
resource-record-data-soa-expire,

111
resource-record-data-soa-minimum,

111
resource-record-data-soa-mname,

111
resource-record-data-soa-refresh,

111
resource-record-data-soa-retry,

111
resource-record-data-soa-rname,

111
resource-record-data-soa-serial,

111
resource-record-data-soa?, 111
resource-record-name, 110
resource-record-ttl, 110
resource-record-type, 110
resource-record?, 110
resume-url-continuation-id, 72
resume-url-ids, 72
resume-url-session-id, 72
resume-url?, 72
returned-via, 80
returned-via?, 80
rfc822-time->string, 96
rfc867-daytime/tcp, 97
rfc867-daytime/udp, 97

117

rfc868-time/tcp, 98
rfc868-time/udp, 98
rooted-file-handler, 18
rooted-file-or-directory-handler,

18

select-option?, 77
send, 66
send-error, 66
send-html, 67
send-html/finish, 67
send-html/suspend, 67
send/finish, 66
send/suspend, 66
server->string, 27
server-host, 27
server-password, 27
server-port, 27
server-user, 27
server?, 27
session, 62
session data, 65
session-alive?, 63
session-continuation-counter, 64
session-continuation-table, 64
session-continuation-table-lock,

64
session-lifetime, 64
session-session-id, 63
session-surflet-name, 63
seval-handler, 19
show-outdated, 84
simple-surflet-api, 84
simplify-uri-path, 25
single-query, 84
smtp-connect, 100
smtp-data, 101
smtp-error?, 99
smtp-expand, 100
smtp-expn, 101
smtp-get-help, 100
smtp-helo, 101
smtp-help, 101
smtp-mail, 101

smtp-noop, 101
smtp-quit, 101
smtp-rcpt, 101
smtp-recipients-rejected-error?,

99
smtp-rset, 101
smtp-saml, 101
smtp-send, 101
smtp-send-mail, 99
smtp-soml, 101
smtp-transactions, 100
smtp-transactions/no-close, 100
smtp-turn, 101
smtp-verify, 100
smtp-vrfy, 101
socket-address->fqdn, 106
split-uri, 25
status-code, 13
status-code-message, 13
status-code-number, 13
surflet-file-name, 65
surflet-form, 69
surflet-form-rule, 71
surflet-handler, 57
surflet-handler/options, 58
surflet-handler/primitives, 66
surflet-handler/requests, 61
surflet-handler/responses, 62
surflet-handler/resume-url, 72
surflet-handler/session-data, 66
surflet-request-headers, 61
surflet-request-input-port, 61
surflet-request-method, 61
surflet-request-request, 61
surflet-request-socket, 61
surflet-request-uri, 61
surflet-request-url, 61
surflet-request-version, 61
surflet-request?, 61
surflet-requests, 61
surflet-response, 62
surflet-response-content-type, 62
surflet-response-data, 62
surflet-response-headers, 62

118

surflet-response-status, 62
surflet-response?, 62
surflet-sxml->low-level-sxml, 71
surflet-sxml-rules, 71
surflets, 60
surflets/addresses, 81
surflets/bindings, 73
surflets/continuations, 64
surflets/ids, 65
surflets/input-field-value, 74
surflets/my-input-fields, 78
surflets/returned-via, 80
surflets/sessions, 62
surflets/surflet-input-fields, 74
surflets/surflet-sxml, 71
surflets/sxml, 68, 69, 71
sxml->low-level-sxml, 69
sxml->string, 70
sxml-attribute-attributes, 68
sxml-attribute?, 68
SXML-rule, 70
system-fqdn, 107

text-rule, 71
tilde-home-dir-handler, 18

unescape-uri, 24
unexpected-eof-from-server, 105
unexpected-eof-from-server?, 105
unload-surflet, 60
uri-escaped-chars, 24
uri-path->uri, 25
url, 68
url-rule, 71

valid-surflet-response-data?, 62

with-anonymous-home, 87
with-back-icon-url, 17
with-banner, 87
with-blank-icon-url, 17
with-cache-surflets?, 58
with-dns-lookup?, 88
with-file-name->content-encoding,

17

with-file-name->content-type, 17
with-file-name->icon-url, 17
with-fqdn, 10
with-log-file, 10
with-log-port, 87
with-make-session-timeout-text,

58
with-port, 10, 87
with-reported-port, 10
with-request-handler, 10
with-resolve-ip?, 11
with-root-directory, 10
with-server-admin, 10
with-session-lifetime, 58
with-simultaneous-requests, 10
with-surflet-path, 58
with-syslog?, 11
with-unknown-icon-url, 18

119

	Contents
	Overview
	Obtaining the system
	How to install SUnet
	How to use the packages

	HTTP server
	Starting and configuring the server
	Requests
	Responses
	Response Bodies
	Request Handlers
	Basic Request Handlers
	Static Content Request Handlers

	CGI Server
	Scheme-Evaluating Request Handlers
	The loser structure
	The toothless structure
	The toothless-eval structure

	Writing Request Handlers
	Parsing HTML Forms

	SSL encryption with Apache

	Parsing and Processing URIs
	Notes on URI Syntax
	Procedures

	Parsing and Processing URLs
	Server Records
	HTTP URLs

	Writing CGI Scripts in Scheme
	SUrflet server
	Howto
	Introduction
	How to run the SUnet webserver that handles SUrflets
	How to send web pages
	How to write web forms
	Program flow control
	Data management
	My own SXML

	API description
	The SUrflet server
	SUrflets
	SUrflet management
	Surflet Request
	Surflet Response
	Sessions
	Basic I/O
	Web I/O
	Continuation-URL
	Input fields
	Web addresses
	Callbacks
	Outdater
	Simple SUrflets

	FTP Server
	FTP Client
	Parsing Netrc Files
	RFC 822 Library
	Time and Daytime
	Daytime
	Time

	SMTP Client
	POP3 Client
	DNS Client Library
	Overview
	Conditions
	High-level Interface
	Low-level Interface
	Parsing /etc/resolv.conf
	IP Addresses as Dotted Strings

	Index

